Guide technique
relatif à l'évaluation de l'état des eaux de surface continentales
(cours d'eau, canaux, plans d'eau)

Décembre 2023
Guide relatif à l’évaluation de l’état des eaux de surface continentales (cours d’eau, canaux, plans d’eau)

Décembre 2023

Articles R.212-10, R.212-11 et R.212-18 du code de l’environnement

Sommaire

1. **PREAMBULE** ... 6
 1.1. **OBJECTIFS DU GUIDE** ... 6
 1.1.1. Répondre aux obligations européennes de classification et de cartographie de l’état écologique et de l'état chimique pour les eaux de surface continentales ... 6
 1.1.2. Fournir des indications complémentaires à utiliser pour le diagnostic des milieux aquatiques... 7
 1.1.3. Favoriser la cohérence globale des évaluations de l’état des eaux .. 7
 1.2. **CALENDRIER** ... 8
 1.3. **CONTENU DU GUIDE** .. 8
 1.4. **REMARQUES CONCERNANT LES LIENS ENTRE L’ETAT DES MASSES D’EAU ET LES MESURES DES PROGRAMMES DE MESURES DE LA DCE** ... 9

2. **RÈGLES D’ÉVALUATION DE L’ÉTAT ÉCOLOGIQUE** 11
 2.1. **DONNEES MOBILISABLES** ... 11
 2.1.1. Origine ... 11
 2.1.2. Chroniques .. 12
 2.2. **ÉVALUATION PAR ELEMENT DE QUALITE (INDICATEURS, VALEURS-SEUILS, MODALITES DE CALCUL (INTEGRATION TEMPORELLE PAR INDICATEUR)) ... 13
 2.2.1. Élément de qualité cours d'eau .. 13
 2.2.2. Élément de qualité plans d'eau .. 22
 2.2.3. Cas des exceptions typologiques et des exceptions locales... 28
 2.2.4. Situation de lacunes dans les outils d’interprétation ... 29
 2.3. **REGLES D’AGREGATION DES ELEMENTS DE QUALITE** ... 30
 2.3.1. Principes généraux et rôle des différents éléments de qualité dans la classification de l’état écologique... 30
 2.3.2. Application pratique ... 31
 2.3.3. Cas des situations de lacunes de données de surveillance.. 35
 2.4. **ATTRIBUTION D’UN ETAT ECOLOGIQUE A L’ECHELLE DE LA MASSE D’EAU** 35
 2.5. **ATTRIBUTION D’UN NIVEAU DE CONFIANCE** 35
 2.6. **CAS DES MASSES D’EAU FORTEMENT MODIFIEES (MEFM)** 35
 2.6.1. Principes généraux .. 35
 2.6.2. Application pratique ... 36
 2.7. **CAS DES MASSES D’EAU ARTIFICIELLES (MEA)** .. 40

3. **RÈGLES D’ÉVALUATION DE L’ÉTAT CHIMIQUE** 41
 3.1. **DONNEES MOBILISABLES** ... 41
 3.2. **INDICATEURS, VALEURS-SEUILS ET MODALITES DE CALCUL (INTEGRATION TEMPORELLE PAR INDICATEURS)** ... 41
 3.2.1. Paramètres et normes de qualité environnementale .. 41
 3.2.2. Modalités de calcul .. 43
 3.3. **ATTRIBUTION D’UN ETAT A L’ECHELLE D’UNE MASSE D’EAU** 48
 3.3.1. Masses d'eau disposant d'une ou plusieurs stations répondant aux critères énoncés au 3.1 48
 3.3.2. Masses d'eau ne disposant pas de stations répondant aux critères énoncés au 3.1..... 48
 3.3.3. Représentation de l’état d’une masse d’eau.. 48
 3.4. **ATTRIBUTION DU NIVEAU DE CONFIANCE DE L’ETAT CHIMIQUE** 49
Liste des annexes

Annexe 1 : État écologique des cours d’eau - Indices biologiques pour la France hexagonale et la Corse

Annexe 2 : État écologique des cours d’eau - Indices biologiques pour les Antilles (Guadeloupe – Martinique)

Annexe 3 : État écologique des cours d’eau - Indices biologiques pour la Guyane

Annexe 4 : État écologique des cours d’eau - Indices biologiques pour la Réunion

Annexe 5 : État écologique des cours d’eau – indices biologiques pour Mayotte

Annexe 6 : État écologique des cours d’eau - Paramètres physico-chimiques généraux

Annexe 7 : État écologique des cours d’eau - Évaluation hydromorphologique des cours d’eau pour la France hexagonale, la Corse, et les départements et régions d’outre-mer (DROM)

Annexe 8 : État écologique des cours d’eau et plans d’eau - Polluants spécifiques et leurs normes de qualité environnementale

Annexe 9 : État écologique des plans d’eau - Éléments biologiques pour la France hexagonale et la Corse

Annexe 10 : État écologique des plans d’eau - Paramètres physico-chimiques généraux

Annexe 11 : État écologique des plans d’eau – Évaluation hydromorphologique des plans d’eau pour la France hexagonale, la Corse et les départements d’Outre-Mer

Annexe 12 : Prise en compte de la variabilité spatiale et règles d’extrapolation spatiale

Annexe 13 : Modalités d’attribution d’un niveau de confiance à l’état écologique évalué d’une masse d’eau – cours d’eau ou plan d’eau

Annexe 14 : État chimique des cours d’eau et des plans d’eau

Annexe 15 : Éléments à prendre en compte pour définir les actions et suivre leurs effets

Annexe 16 : Remarques concernant l’utilisation des résultats de l’évaluation de l’état des masses d’eau en lien avec les programmes de mesures de la DCE
1. **PREAMBLE**

1.1. **Objectifs du guide**

- l’arrêté du 8 juillet 2010 ;
- l’arrêté du 28 juillet 2011 ;
- l’arrêté du 27 juillet 2015 ;
- l’arrêté du 27 juillet 2018 ;

Dans la suite du présent guide, la référence à cet arrêté modifié est opérée en renvoyant simplement à l’arrêté évaluation du 25 janvier 2010 modifié.

Le présent guide traite spécifiquement des eaux de surface continentales : cours d’eau, canaux et plans d’eau. Il vise à fournir les éléments nécessaires à une application harmonisée des règles définies par cet arrêté, pour les différentes finalités listées ci-après.

1.1.1. **Répondre aux obligations européennes de classification et de cartographie de l’état écologique et de l’état chimique pour les eaux de surface continentales**

Le présent guide vise à répondre aux exigences de la directive-cadre européenne sur l’eau (DCE) de classification et cartographie de l’état écologique et de l’état chimique de chaque masse d’eau de surface continentale, selon les modalités suivantes :

- **état écologique** agrégé à partir des différents éléments de qualité, avec une représentation des cinq classes d’état écologique ;
- pour les **masses d’eau fortement modifiées**, adaptation des modalités d’évaluation de l’état écologique, avec une représentation des quatre classes de potentiel écologique ;
- **état chimique** agrégé à partir des substances prioritaires et dangereuses prioritaires, avec une représentation des deux classes d’état chimique selon les grilles de lecture suivantes :
 - **état** pour l’ensemble des substances prioritaires et dangereuses prioritaires ;
 - **état hors substances ubiquistes** (substances numérotées 5, 21, 28, 30, 35, 37, 43 et 44 de l’annexe 14) ;
 - **état hors nouvelles substances introduites par la directive 2013/39** (substances numérotées 34 à 45 de l’annexe 14) ;
 - **état hors substances pour lesquelles une NQE plus stricte a été établie par la directive 2013/39** (substances numérotées 2, 5, 15, 20, 22, 23, 28 de l’annexe 14) ;
 - attribution d’un **niveau de confiance** à l’état écologique et à l’état chimique, évalué pour chacune des masses d’eau.

La classification de l’état à l’échelle des masses d’eau est établie et validée par les secrétariats techniques de bassin (STB), qui associent les services compétents des agences de l’eau, des directions régionales de l’environnement, de l’aménagement et du logement (DREAL) et de l’Office 1

1 Directive européenne 2000/60/CE du 23 octobre 2000 établissant un cadre pour une politique communautaire de l’eau
français de la biodiversité (OFB). Dans les régions ultrapériphériques (RUP) à l’exception de Mayotte, en l’absence de STB, ce travail est assuré conjointement par la direction de l’environnement, de l’aménagement et du logement (DEAL), ou la direction générale des territoires et de la mer (DGTM) pour la Guyane, et les offices de l’eau. A Mayotte, en l’absence d’office de l’eau, il est réalisé par la DEAL.

Une carte de l’état des masses d’eau est publiée, deux fois par plan de gestion, dans les documents de planification de la mise en œuvre de la DCE : dans les états des lieux et dans les SDAGE. Des bilans intermédiaires peuvent être établis sous la responsabilité des STB (ou de la DEAL et l’office de l’eau dans les RUP).

Le présent guide est ainsi fondamentalement destiné aux acteurs en charge, via les secrétariats techniques de bassin (ou de la DEAL et de l’office de l’eau dans les RUP), de la publication des documents de planification, de rapportage ou d’appui à ces actions (état des lieux, cartes SDAGE, bilans intermédiaires, etc.).

1.1.2. Fournir des indications complémentaires à utiliser pour le diagnostic des milieux aquatiques

Porter un diagnostic sur les milieux aquatiques nécessite de prendre en compte ces règles mais également des éléments complémentaires comme les informations relatives aux pressions, et d’autres paramètres, valeurs-seuils et outils d’interprétation des données milieu (analyse des tendances temporelles, etc.). Un tel diagnostic peut être réalisé afin de :
- consolider ou affiner la connaissance de l’état des eaux ;
- identifier les principales altérations du milieu et les pressions en cause ;
- identifier les mesures à mettre en œuvre, puis évaluer leur efficacité.

Ces éléments peuvent servir tant à mettre en œuvre la DCE qu’à répondre à des objectifs de connaissance et de gestion locale.

Pour évaluer l’efficacité des programmes de mesures, il est en particulier nécessaire de distinguer, en complément de l’état écologique et de l’état chimique des masses d’eau qui constituent l’objectif de résultat, des indicateurs et autres outils montrant l’effet des actions mises en œuvre qui soient plus sectoriels, plus spécialisés par domaines d’action et de politique publique (réduction des pollutions issues de rejets ponctuels, des pollutions diffuses, en matières organiques, en nutriments, en substances dangereuses ; restauration du fonctionnement hydromorphologique des milieux, etc.) ou des outils de diagnostic chimique et biologique déjà développés ou en cours de développement – par exemple pour la chimie, indicateurs gradués et agrégés d’évaluation de l’état des eaux, cf. annexe 15.

1.1.3. Favoriser la cohérence globale des évaluations de l’état des eaux
Afin de favoriser la cohérence globale des évaluations de l’état des eaux, les pratiques des différents acteurs de l’acquisition de données sur la qualité des milieux aquatiques dans les bassins doivent être harmonisées. C’est pourquoi il est préconisé de suivre ces règles lorsque l’on cherche à établir une évaluation de l’état des eaux, sur la base de données acquises dans le cadre des programmes de surveillance DCE ou bien de réseaux complémentaires. En effet, ces réseaux complémentaires contribuent à mieux évaluer à une échelle plus fine, l’état des eaux et les effets des mesures en complément de l’effet à l’échelle de la masse d’eau.

1.2. Calendrier

Ce guide décrit les règles d’évaluation de l’état écologique, de l’état chimique et du potentiel écologique des cours d’eau et plans d’eau, à appliquer pour l’élaboration des cartographies de l’état des masses d’eau à inclure dans les états des lieux 2025 puis dans les schémas directeurs d’aménagement et de gestion des eaux (SDAGE) et leurs programmes de mesures (PDM) en vigueur pour le cycle DCE 2028-2033.

Ces règles peuvent être amenées à évoluer d’un cycle à l’autre pour tenir compte des travaux menés aux niveaux européen et national. Ceux-ci fourniront des résultats supplémentaires permettant d’établir des règles d’évaluation plus abouties scientifiquement et plus complètes au regard des exigences de la DCE.

En cohérence avec les cycles de gestion de six ans (SDAGE et PDM) instaurés par la DCE, la révision des règles d’évaluation s’envisage à chaque cycle, selon le principe général suivant : un référentiel unique d’évaluation de l’état des eaux par cycle de gestion.

1.3. Contenu du guide

Le présent guide donne les instructions permettant l’évaluation de l’état écologique (ou du potentiel écologique pour les masses d’eau fortement modifiées (MEFM) ou masses d’eau artificielles (MEA)) et de l’état chimique au niveau d’un site d’évaluation, qui se caractérisent par :

- pour l’état écologique ou le potentiel écologique :
 o Quatre familles distinctes de paramètres (éléments biologiques, paramètres généraux de la physico-chimie, polluants spécifiques de l’état écologique et l’hydromorphologie) ;
 o cinq classes pour l’état écologique (très bon, bon, moyen, médiocre, mauvais) et quatre classes pour le potentiel écologique (bon et plus, moyen, médiocre, mauvais) ;
- pour l’état chimique :
 o les paramètres à suivre définissant l’état chimique des eaux, aussi appelés substances prioritaires et dangereuses prioritaires ;
 o les normes de qualité environnementales (NQE) pour chacun de ces paramètres ;
 o deux classes d’état (bon, mauvais).

Pour répondre aux exigences européennes de rapportage, le présent guide précise également, outre les données mobilisables, les indicateurs, les valeurs-seuils et les modes de calcul pour chaque indicateur :

- les règles d’agrégation entre les différents éléments de qualité afin de parvenir à un état écologique agrégé, et entre les différentes substances afin de parvenir à un état chimique agrégé ;
- les modalités de prise en compte de la variabilité spatiale et d’extrapolation spatiale afin d’attribuer un état écologique et un état chimique à chaque masse d’eau ;

2 Notamment l’inter-étalonnage européen des méthodes d’évaluation de l’état écologique des plans d’eau, dont les résultats ont fait l’objet d’une décision de la Commission européenne le 12 février 2018. La liste des substances prioritaires est également mise à jour à chaque cycle, à l’exception du passage au cycle 2022-2027 qui se fera à liste constante.

3 Exploitation des données acquises dans le cadre des programmes de surveillance DCE ; mise au point de méthodes d’évaluation améliorées et complétées, mise à jour des polluants spécifiques de l’état écologique.
- les modalités d’attribution d’un **niveau de confiance à l’état écologique et à l’état chimique**, évalué pour une masse d’eau ;
- les modalités spécifiques relatives à l’évaluation du **potentiel écologique** sur les masses d’eau artificielles ou fortement modifiées.

Cas des régions ultrapériphériques :

S’agissant des éléments de qualité biologiques, plusieurs indices spécifiques ont été mis au point pour les cours d’eau des départements de la Guadeloupe, de la Guyane, de la Martinique, de la Réunion et de Mayotte. Pour les plans d’eau des RUP, le faible nombre d’écosystèmes (trois MEFM/MEA et un plan d’eau naturel) et l’absence de référence ne permet pas de développer d’indicateur DCE. Aussi, des grilles de qualité sont à construire par expertise avec l’appui technique de l’OFB.

S’agissant de l’état chimique, les difficultés liées aux coûts d’échantillonnage et d’analyse, à la logistique, aux capacités analytiques des laboratoires locaux et aux conditions hydrologiques spécifiques ont conduit certains RUP à adapter leur programme de surveillance. En particulier, le recours aux échantillonneurs passifs, non autorisés par la directive, constitue une alternative intéressante et encouragée. Dans l’attente d’un cadrage européen sur ces outils, les données recueillies pourront nourrir l’évaluation sur dire d’experts. Par ailleurs, le suivi des substances prioritaires disposant d’une NQE dans le biote n’est pas imposé dans l’attente de la parution des éléments de cadrage sur ce type de suivi en outre-mer, conformément à ce qui est indiqué dans l’arrêté surveillance du 25 janvier 2010 modifié.

1.4. Remarques concernant les liens entre l’état des masses d’eau et les mesures des programmes de mesures de la DCE

Les résultats obtenus à partir des règles énoncées dans le présent guide font partie des éléments à considérer pour déterminer et suivre les actions des programmes de mesures DCE et des autres dispositifs de planification dans le domaine de l’eau, ainsi que pour l’instruction des projets d’installation, ouvrages, travaux et activités soumis à autorisation environnementale.

Cependant, elles ne traitent pas de la détermination de ces mesures. En effet, la définition des mesures nécessaires au respect des objectifs environnementaux de la DCE est fondée sur une analyse de risque qui nécessite de considérer d’autres informations que la classe d’état attribuée à la masse d’eau (état des masses d’eau amont/aval, connaissance des pressions, flux, altérations hydromorphologiques, par exemple) à l’échelle du bassin ou du sous bassin versant.

4 Le guide pour la mise à jour des états des lieux publié par la direction de l’eau et de la biodiversité en septembre 2023 donne les définitions et méthodes permettant d’évaluer le risque de non-atteinte des objectifs environnementaux de la DCE. L’une des finalités de cette évaluation du risque est de fonder la construction du programme de mesures destiné à réduire les pressions importantes à l’origine d’un tel risque, pour précisément faire en sorte que, hors demandes d’exemptions dûment justifiées, le risque ne se traduise pas dans les faits par une non atteinte des objectifs à l’échelle considérée.

L'annexe 16 au présent guide donne des indications relatives à l'utilisation des résultats d’évaluation de l’état écologique des masses d’eau dans ce cadre. Elle distingue notamment différentes grandes catégories de situations en matière de liens entre l’état écologique des masses d’eau et les mesures des programmes de mesures.

En particulier, il peut être nécessaire de mettre en œuvre des mesures au titre de la DCE, même lorsque l’objectif d’une masse d’eau est atteint, notamment :
- pour respecter le principe de non-dégradation de cette masse d’eau ;
- pour atteindre l’objectif ou respecter le principe de non-dégradation d’autres masses d’eau ;
- pour ne pas compromettre l’atteinte des objectifs des zones protégées ;
- ou au titre d’autres réglementations nationales applicables.
2. RÈGLES D’ÉVALUATION DE L’ÉTAT ÉCOLOGIQUE

Le système d’évaluation de l’état des eaux (SEEE) est le système national qui met à disposition les éléments de référence pour le calcul des indicateurs biologiques à travers une interface commune d’accès aux algorithmes disponibles à l’adresse suivante : https://seee.eaufrance.fr/

L’ensemble des résultats des indicateurs doit être calculé à l’aide du système d’évaluation de l’état des eaux, ou d’un système équivalent utilisant les mêmes algorithmes.

2.1. Données mobilisables

2.1.1. Origine

Les données de surveillance à mobiliser pour élaborer les cartes d’état des eaux sont celles diffusées par les bassins dans le cadre du système d’information sur l’eau (SIE). Il s’agit donc exclusivement de données validées, au sens où, notamment, elles sont acquises dans le respect des normes, des méthodes, des cahiers de charges et, d’une manière générale, de l’ensemble des guides de bonnes pratiques existants.

Ces données, disponibles sur les sites internet des agences de l’eau, incluent les résultats des relevés de terrain relatifs aux différents éléments de qualité, mais aussi d’autres informations, requises afin d’appliquer les méthodes d’évaluation, dont notamment :
- le type FR de la station, requis pour l’évaluation de tous les éléments de qualité biologiques
- l’altitude de la station, requise pour le calcul de l’IPR et l’attribution d’une classe d’état de l’élément de qualité poissons ;
- la taille du bassin versant de la station, requise pour l’attribution d’une classe d’état de l’élément de qualité diatomées ;
- le domaine piscicole de la station, requis pour l’évaluation de l’élément de qualité physico-chimique température en cours d’eau ;
- l’appartenance ou non de la station à une exception typologique, pour l’évaluation des éléments de qualité physico-chimiques généraux des cours d’eau ;
- le fond géochimique en polluants spécifiques de l’état écologique non synthétiques, et certains paramètres liés à la qualité de l’eau affectant la biodisponibilité de ces polluants. De telles données peuvent être utilisées afin de corriger les normes de qualité environnementale applicables pour ces polluants non synthétiques.

Pour pouvoir attribuer un état écologique à chacune des masses d’eau, il s’avère indispensable de s’appuyer sur l’ensemble des informations adéquates disponibles. C’est pourquoi, on utilisera les données de surveillance de l’état des milieux acquises non seulement à partir des réseaux établis en application de la DCE (réseau de contrôle de surveillance, réseau de contrôle opérationnel, réseau de référence), mais également celles issues d’autres réseaux. Parmi ces données, on exclura toutefois celles qui ne correspondent pas au cahier des charges suivant :
- les sites de suivi sont représentatifs de l’état d’une masse d’eau ;
- les protocoles de prélèvement et d’analyse sont conformes à ceux prescrits dans le cadre des réseaux DCE.

L’annexe 12 précise les critères permettant d’identifier les sites représentatifs de l’état d’une masse d’eau, tels qu’ils sont définis par l’arrêté évaluation dans la section 1 de son annexe 9.

2.1.2. Chroniques

Afin d’accroître la fiabilité de l’évaluation obtenue sur un même site de suivi pour chaque élément de qualité ou paramètre de l’état écologique (hors polluants spécifiques), il est nécessaire d’avoir recours à un nombre suffisant de données. Ainsi, dans l’objectif de procéder à une évaluation actualisée de l’état des masses d’eau, tout en tenant compte de la variabilité naturelle des milieux et de la disponibilité des données, il sera utilisé :
- les données de surveillance des trois dernières années pour les cours d’eau (par exemple les années 2021, 2022 et 2023 pour les cartes des états des lieux 2025), sauf pour l’hydromorphologie, où on utilisera les données de surveillance les plus récentes parmi les six dernières années ;
- les données de surveillance des six dernières années pour les plans d’eau (par exemple les années 2018 à 2023 pour les cartes des états des lieux 2025).

Les chroniques de données plus longues éventuellement disponibles doivent être utilisées, suivant les cas, pour l’évaluation de l’état d’une masse d’eau (cf. paragraphe 2.3.3 relatif aux situations de lacunes de données et annexe 12) ou pour l’attribution d’un niveau de confiance à l’état évalué d’une masse d’eau (cf. paragraphe 2.5 et annexe 13).

Pour les polluants spécifiques de l’état écologique, on utilisera les résultats des données validées de l’année ou des années de suivi les plus récentes.

6 Une chronique de trois années est nécessaire pour évaluer de manière relativement fiable l’état d’une masse d’eau.

7 Pour les plans d’eau, vu l’inertie des milieux et la faible disponibilité des données, le recours à une chronique plus longue que pour les cours d’eau s’impose. Par ailleurs et de manière générale, il convient de relativiser la notion d’état actualisé des masses d’eau, puisque la variabilité naturelle des milieux et le délai de réponse des éléments ne permettent pas de rendre compte immédiatement des changements.
2.2. Évaluation par élément de qualité (indicateurs, valeurs-seuils, modalités de calcul (intégration temporelle par indicateur))

Conformément à l’arrêté du 25 janvier 2010 modifié établissant le programme de surveillance de l’état des eaux en application de l’article R. 212-22 du code de l’environnement, les données de surveillance sont acquises à partir de protocoles normalisés ou standardisés (cf. 2.1). Les données obtenues à l’aide de ces méthodes de prélèvement sont utilisées pour évaluer l’état des eaux.

Conformément à la DCE, ces données sont utilisées par des indicateurs pour évaluer l’état à l’élément de qualité. Pour rappel, ces indicateurs sont disponibles dans des algorithmes de référence qu’utilise le SEE : https://www.seee.eaufrance.fr (cf. 2.). Les résultats permettent l’affectation de la classe d’état à l’élément de qualité.

Ces derniers doivent être arrondis à deux décimales inférieures à celle permettant la détermination de la classe avant d’être moyennés.

Exemple, pour l’indice biologique diatomées (IBD), le résultat d’EQR 0,7853216 peut être arrondi à 0,7853 sachant que la limite entre les classes bon et moyen est 0,78. Dans le cas présent la classe d’état est bonne avant d’être moyennée.

2.2.1. Élément de qualité cours d’eau
2.2.1.1. Éléments de qualité biologique

Pour les cours d’eau, les éléments de qualité biologique à prendre en compte pour l’évaluation de l’état écologique sont :
- la flore aquatique ;
- la faune benthique invertébrée ;
- l’ichtyofaune.

Dans le cadre de la DCE, l’élément de qualité biologique flore aquatique comprend les macrophytes, le phytobenthos (diatomées) et le phytoplancton. Dans le cadre des règles d’évaluation nationale de l’état écologique des eaux, macrophytes, phytobenthos et phytoplancton sont considérés comme trois éléments de qualité biologique distincts.

Dans le texte de la DCE, le phytoplancton n’est pas explicitement inclus à l’annexe V, 1.1.1. dans la liste des éléments de qualité pour les rivières. En revanche il est inclus comme élément de qualité biologique à l’annexe V, 1.2.1. À cet égard, l’élément de qualité phytoplancton doit être utilisé comme un élément de qualité biologique à part entière lorsqu’il est défini comme pertinent par l’arrêté « surveillance » du 25 janvier 2010 modifié (Annexe I, partie 1.3). L’élément de qualité phytoplancton peut également être utilisé sur d’autres cours d’eau sur lesquels il est jugé comme utile pour compléter le diagnostic.

Selon la DCE, l’état écologique correspond à la qualité de la structure et du fonctionnement des écosystèmes aquatiques. Sa déclinaison en cinq classes s’établit sur la base d’un écart aux conditions de référence par type de masses d’eau. Les éléments biologiques jouant un rôle essentiel dans l’évaluation de l’état écologique, un exercice européen d’inter-étalonnage des limites du bon état est mis en œuvre dans le cadre de la DCE validant au fur et à mesure de leur mise à disposition les limites des classes très bon/bon et bon/moyen des indicateurs biologiques Hexagonaux et de

8 Situations peu ou pas perturbées
9 L’inter-étalonnage a pour but de s’assurer que les limites du bon état écologique établies par élément biologique sont comparables d’un État-membre à un autre et conformes aux définitions normatives de la DCE (annexe V).
Corse. Pour les indicateurs développés après cet exercice, ils font l'objet d'un exercice de raccordement à l'inter-étalonnage. Les résultats de cet exercice sont publiés dans une décision de la Commission européenne et s'impose aux États membres. La décision la plus récente est la décision de la Commission n°2018/229/UE du 12 février 2018 reprenant l'ensemble des indicateurs validés à l'heure actuelle par la Commission européenne.

Dans la continuité des instructions diffusées jusqu'à présent et comme défini par l'arrêté évaluation du 25 janvier 2010 modifié, les indices biologiques, valeurs-seuils et règles de calcul à appliquer pour évaluer l'état des éléments de qualité biologique des cours d'eau sont présentés ci-après.

(i) Indices et valeurs-seuils

- Phytoplancton :
 Pour la France hexagonale et la Corse : l'Indice phytoplancton grand cours d'eau (IPHYGE – code Sandre 1518)
 Les limites de classes à prendre en compte sont celles mentionnées dans la table de l'annexe 1.

 Pour le département de la Guyane : l'élément de qualité phytoplancton est pertinent uniquement pour les très grands cours d'eau, mais les connaissances actuelles ne permettent pas de fixer des indices et valeurs seuils fiables.

 Pour les départements de la Guadeloupe, de la Martinique, de Mayotte et de la Réunion : l'élément de qualité biologique phytoplancton n’est pas pertinent pour ces départements.

- Macrophytes :
 Pour la France hexagonale et la Corse : indice biologique macrophytique en rivière (IBMR – code Sandre 2928)
 Les limites de classe à prendre en compte sont celles mentionnées dans la table de l’annexe 1.

 Pour les départements de la Guadeloupe, de la Guyane, de la Martinique, de Mayotte et de la Réunion : aucun indice biologique macrophytes n’a été développé compte-tenu que cet élément de qualité biologique n’est pas pertinent dans ces départements. Les caractéristiques régissant le fonctionnement et la typologie des cours d’eau des RUP limitent fortement la faisabilité de mise au point d’un indicateur de qualité biologique tels que ceux qui ont été développés en France hexagonale et Corse à partir des peuplements macrophytiques (voir argumentation en annexes 2, 3, 4 et 5).

- Diatomées :
 Pour la France hexagonale et la Corse : indice biologique diatomées (IBD2007, code Sandre 5856)
 Les limites de classes à prendre en compte sont celles mentionnées dans la table de l’annexe 1.

 Pour les départements de la Martinique et de la Guadeloupe : indice diatomique antillais (IDA – code Sandre 8053)
 Les limites de classes à prendre en compte sont celles mentionnées dans la table de l’annexe 2.

 Pour le département de la Guyane : indice diatomique de Guyane Française (IDGF - code Sandre 1502)
Les limites de classes à prendre en compte sont celles mentionnées dans la table de l’annexe 3.

Pour le département de la Réunion : indice diatomique Réunion (IDR – code Sandre 8062)
Les limites de classes à prendre en compte sont celles mentionnées dans la table de l’annexe 4.

Pour le département de Mayotte : Indice Diatomées Mayotte espèce (IDMsp – code Sandre 1519) Les limites de classes à prendre en compte sont celles mentionnées dans la table de l’annexe 5.

- Invertébrés :

Pour la France hexagonale et la Corse : Trois indices biologiques invertébrés sont à utiliser en fonction de la méthode de prélèvement utilisée et du type de cours d’eau :

• L’indice invertébrés multimétrique (I2M2 – code Sandre 7613)
Cet indice est à utiliser pour tous les cours d’eau échantillonnés selon le protocole de prélèvement des macro-invertébrés aquatiques en rivières peu profondes (NF T90-333). De manière temporaire pour le prochain cycle, il est possible en lieu et place de l’I2M2 pour l’HER 9A d’utiliser l’indice dit « équivalent » (phases A+B) de la méthode macro-invertébrés NF T90-333 (code Sandre 5910).

• L’indice macro-invertébrés grands cours d’eau (MGCE 12 prélèvements – code Sandre 6951)
Cet indice est à utiliser pour les cours d’eau de taille très petite à petite (type TP ou P) qui sont échantillonnés selon le protocole de prélèvements des macro-invertébrés aquatiques en rivières profondes et canaux (XP T90-337). Il se calcule comme l’IBGN selon la norme NF T90-350, mais sur l’ensemble des phases A, B et C comprenant les 12 prélèvements élémentaires.

• L’indice invertébrés multimétrique cours d’eau profonds (I2M2 CEP – code Sandre 1500)
Cet indice est à utiliser pour les cours d’eau de taille moyenne et qui sont échantillonnés selon le protocole de prélèvements des macro-invertébrés aquatiques en rivières profondes et canaux (XP T90-337). L’I2M2 CEP s’applique également, pour ce cycle de gestion, en lieu et place de l’I2M2 pour les très grands cours d’eau échantillonnés selon le protocole de prélèvement des macro-invertébrés aquatiques en rivières peu profondes (NF T90-333) pour lesquels il n’existe pas de conditions de référence.

Le tableau 16 de l’arrêté évaluation du 25 janvier 2010 modifié précise l’indicateur à utiliser en fonction de la classe de taille du cours d’eau, de sa profondeur, et de la méthode de prélèvement utilisée.
Les limites de classes à prendre en compte sont celles mentionnées dans les tables de l’annexe 1.

Pour les départements de la Martinique et de la Guadeloupe : indice biologique macro-invertébrés Antilles (IBMA – code Sandre 8040)
Les limites de classes à prendre en compte sont celles mentionnées dans la table de l’annexe 2.

Pour le département de la Guyane : score moyen des éphéméroptères de Guyane (SMEG – code Sandre 8562). Pour l’état des lieux 2025, il est possible en lieu et place du SMEG pour les cours d’eau de taille très petits à petit, d’utiliser l’indice biologique macroinvertébrés de Guyane 1 (IBMG 1).
Les limites de classes à prendre en compte sont celles mentionnées dans la table de l’annexe 3.
Pour le département de la Réunion : indice Réunion macro-invertébrés (IRM - code Sandre 8296).
Les limites de classes à prendre en compte sont celles mentionnées dans la table de l'annexe 4.

Pour le département de Mayotte : indicateur macroinvertébrés multimétrique pour les cours d’eau de Mayotte (I2M2-Mayotte – code Sandre 1501)
Les limites de classes à prendre en compte sont celles mentionnées dans la table de l'annexe 5

- Poissons :

Pour la France hexagonale et la Corse : indice poissons rivière (IPR – code Sandre 7036)
Les limites de classes à prendre en compte sont celles mentionnées dans la table de l'annexe 1.

Pour le département de la Guyane : indice poissons Guyane global (IPG global)
Les limites de classes à prendre en compte sont celles mentionnées dans la table de l'annexe 3.

Pour le département de la Réunion : indice Réunion poissons (IRP)
Les limites de classes à prendre en compte sont celles mentionnées dans la table de l'annexe 4.

Pour les départements de la Guadeloupe, de la Martinique et de Mayotte : Les connaissances actuelles ne permettent pas de fixer des indices et valeurs seuils fiables pour cet élément de qualité pour ces départements.

(ii) Modalités de calcul
Pour chaque élément biologique, on calculera la moyenne des indices mentionnés précédemment sur la chronique de données utilisée.

Exemple : pour un cours d’eau dont la note d’EQR de l’IBD est de 0,6852 en 2021, de 0,7013 en 2022 et de 0,7543 en 2023 la valeur de l’IBD à prendre en compte (cf. 2.1.2) sera de 0,7136. Cette valeur permettra de déterminer la qualité du cours d’eau pour l’élément de qualité biologique diatomées. Il sera à agréger avec les classes des autres éléments de qualité biologique et physico-chimique selon le principe du paramètre le plus déclassant (principe du one out/all out) pour déterminer l’état écologique du cours d’eau.

En pratique, lorsque l’on dispose d’une unique opération de contrôle, le calcul peut être utilisé mais le résultat doit être confirmé à dire d’expert.

Dans les cas où l’on dispose de plusieurs mesures pour une même année, notamment pour les invertébrés, on utilisera la valeur de l’indice mesuré lors de la période la plus comparable à celle préconisée par l’arrêté surveillance du 25 janvier 2010 modifié.
2.2.1.2. Éléments physico-chimiques généraux

Pour les cours d’eau, les cinq éléments de qualité physico-chimique généraux à prendre en compte pour l’évaluation de l’état écologique sont :
- la température ;
- le bilan d’oxygène ;
- la salinité* ;
- l’état d’acidification ;
- la concentration en nutriments.

*L’élément de qualité salinité est considéré comme non pertinent pour l’évaluation de l’état écologique des cours d’eau mais peut être utilisé pour affiner le diagnostic.

Certains de ces éléments de qualité physico-chimique généraux sont composés de plusieurs paramètres physico-chimiques tel qu’indiqué en annexe 6.

Exemple : pour les rivières, l’élément de qualité bilan de l’oxygène comprend les paramètres oxygène dissous, taux de saturation en O₂ dissous, DBO₅, carbone organique dissous.

(i) Paramètres et valeurs-seuils

Selon la DCE, les éléments physico-chimiques généraux interviennent essentiellement comme facteurs explicatifs des conditions biologiques. Pour la classe d’état bon et les classes inférieures, les valeurs-seuils de ces éléments physico-chimiques doivent être fixées de manière à respecter les conditions permettant aux éléments de qualité biologique d’atteindre ces mêmes classes d’état. En outre, pour la classe bon, elles doivent être fixées de manière à permettre le bon fonctionnement de l’écosystème.

Les paramètres et valeurs-seuils à prendre en compte sont ceux mentionnés en annexe 6. Le cas échéant, les valeurs-seuils adaptées pour certains types de cours d’eau sont à utiliser (cf. annexe 6).

(ii) Modalités de calcul

Pour les paramètres oxygène dissous et taux de saturation en O₂ dissous, on calculera le percentile 10 à partir de la chronique de données acquise.

Pour l’élément de qualité acidification, on comparera :
- le percentile 10 obtenu à partir de la chronique de données acquises lors de ces trois années aux valeurs du pHₘᵢₙ ;
- le percentile 90 obtenu des données acquises lors de ces trois années aux valeurs du pHₘₐₓ.

La classe d’état de l’élément de qualité acidification est déterminée par la classe d’état la moins bonne de ces deux paramètres (pHₘᵢₙ ou pHₘₐₓ).

Pour les autres éléments de qualité, on calculera le percentile 90, pour chaque paramètre, à partir de la chronique de données acquise lors de ces trois années.

11 Les éléments physico-chimiques généraux ne sont pas les seuls facteurs d’influence des éléments biologiques.
12 Classes moyen, médiocre et mauvais.
13 En l’état actuel des connaissances, les limites de classes sont exprimées par paramètre et non par élément de qualité (par exemple l’oxygène dissous est un paramètre de l’élément bilan d’oxygène).
14 Le calcul du percentile 90 de chaque paramètre s’effectue selon la formule du SEQ eau V1 sur la base des données acquises sur l’ensemble de la période des trois années.
Le calcul s’effectue de préférence sur les données issues d’au moins dix opérations de contrôle. En pratique, il peut être conduit avec un nombre d’opérations inférieur mais le résultat obtenu est à confirmer par un expert. En deçà d’un nombre de quatre opérations de contrôle, le résultat est indéterminé.

2.2.1.3. Polluants spécifiques de l’état écologique

(i) Liste des polluants spécifiques de l’état écologique et normes de qualité environnementales de l’état écologique

Les polluants spécifiques de l’état écologique (PSEE) sont définis par la DCE comme des substances déversées en quantités significatives dans un bassin ou un sous bassin hydrographique. Les listes de PSEE répondent aux deux interprétations complémentaires de cette définition. Ont été retenus comme PSEE :
- d’une part les substances rejetées en quantités telles que des déclassements sont observés dans le milieu sur la base des éléments d’évaluation disponibles ;
- d’autre part les substances rejetées en fort tonnage dans le milieu.

Les substances choisies comme PSEE répondent également aux critères suivants :
- avoir une norme robuste associée ;
- ne pas être interdites (exception pour la chlordécone), ni ubiquistes ;
- avoir été suffisamment recherchées lors du premier cycle (au moins 10 % des stations du bassin) ;
- ne pas présenter de problèmes analytiques majeurs à l’heure actuelle.

(ii) **Modalités de calcul**
Les NQE pour les substances de l’état écologique sont exprimées en moyenne annuelle. La vérification du respect ou non des NQE par substance s’effectuera à partir des données mesurées suivant le même modèle que pour les substances de l’état chimique (cf. règles de l’état chimique au paragraphe 3).

(iii) **Volume de données à utiliser**
Le calcul s’effectue sur les données issues au minimum de quatre opérations de contrôle, conformément aux fréquences prescrites par l’arrêté surveillance du 25 janvier 2010 modifié. On retient la moyenne annuelle de l’année la plus récente disponible.

En deçà d’un nombre de quatre opérations de contrôle, le résultat est indéterminé.

2.2.1.4. Éléments de qualité hydromorphologique

Dans l’attente de la détermination d’indicateurs et de valeurs seuils pertinents pour les éléments de qualité hydromorphologique, les informations disponibles sur les pressions hydromorphologiques sont à considérer pour la définition du très bon état écologique.

Ces informations sont notamment celles issues du « Système relationnel d’audit de l’hydromorphologie des cours d’eau » (SYRAH-CE) pour l’Hexagone et du « Référentiel hydromorphologique ultramarin » (RHUM) pour l’Outre-mer ; lesquels seront prochainement regroupés et actualisés au sein d’un outil unique intitulé PRHYMO (Plateforme Pressions et Risques d’impacts Hydromorphologiques). Une fois paru et validé par le groupe de travail national planification, c’est cet outil qui sera à utiliser en lieu et place des dispositifs SYRAH-CE et RHUM.

PRHYMO sera un outil d’aide à la décision de même architecture que les dispositifs qu’il remplace, permettant d’évaluer, à l’échelle de la masse d’eau, les gradients de pressions hydromorphologiques et les risques d’altération hydromorphologique qui en découlent. Cette architecture repose sur le croisement de grands jeux de données nationaux, collectés à grande échelle.

En complément de PRHYMO et en tant qu’outils d’aide au diagnostic, les résultats et indicateurs issus de la méthode de Caractérisation hydromorphologique des cours d’eau (CARHYCE) doivent être pris en compte dans l’évaluation de la qualité hydromorphologique, lorsque disponibles et pertinents. Ceux-ci peuvent en effet permettre, pour chaque station DCE prospectée, de corroborer ou non les analyses de risques d’altération fournies par PRHYMO à partir, cette fois, de données d’observation collectées au plus près du terrain ; et de disposer ainsi d’une information complémentaire pour l’analyse des pressions hydromorphologiques et de leurs effets, en quantifiant et en évaluant les altérations morphologiques du cours d’eau (géométrie hydraulique, structure et substrats du lit, structure des rives et des corridors rivulaires végétalisés).

Des cas d’étude et des éléments d’interprétation et d’analyse des résultats et indicateurs issus de CARHYCE sont présentés en annexe 7 afin d’aider les utilisateurs dans l’utilisation de CARHYCE en tant qu’outil diagnostic en complément de PRHYMO.
2.2.1.5. Synthèse des éléments de qualité et indicateurs à prendre en compte pour l’évaluation de l’état écologique des cours d’eau

<table>
<thead>
<tr>
<th>Eléments de qualité biologique</th>
<th>Paramètres biologiques</th>
<th>Indicateurs disponibles à utiliser pour l’évaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Hexagone et Corse</td>
</tr>
<tr>
<td>Phytoplancton</td>
<td>Composition, abondance et biomasse</td>
<td>IPHYGE*</td>
</tr>
<tr>
<td>Macrophytes</td>
<td>Composition et abondance</td>
<td>IDA</td>
</tr>
<tr>
<td>Phytobenthos</td>
<td>Composition et abondance</td>
<td>IBM</td>
</tr>
<tr>
<td>Faune benthique invertée</td>
<td>Composition et abondance</td>
<td>I2M*,** / I2M CEP*/ MGCE 12 prélèvements*</td>
</tr>
<tr>
<td>Ichtyofaune</td>
<td>Composition, abondance et structure de l’âge</td>
<td>IPR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elément de qualité physico-chimique</th>
<th>Paramètres physico-chimiques</th>
<th>Indicateurs disponibles à utiliser pour l’évaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Température de l’eau</td>
<td>-</td>
<td>Valeurs-seuils en annexe 6 Valeurs-seuils en annexe 6 adaptables aux spécificités locales</td>
</tr>
<tr>
<td>Bilan d’Oxygène</td>
<td>Oxygène dissous</td>
<td>Valeurs-seuils en annexe 6 Valeurs-seuils en annexe 6 adaptables aux spécificités locales</td>
</tr>
<tr>
<td></td>
<td>Taux de saturation en O2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DBO5</td>
<td></td>
</tr>
<tr>
<td>Salinité</td>
<td>Conductivité</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sulfates</td>
<td></td>
</tr>
<tr>
<td>Etat d’acidification</td>
<td>pHmin et pHmax</td>
<td>Valeurs-seuils en annexe 6 Valeurs-seuils en annexe 6 adaptables aux spécificités locales</td>
</tr>
<tr>
<td>Concentration en nutriment</td>
<td>PO4³⁻</td>
<td>Valeurs-seuils en annexe 6 Valeurs-seuils en annexe 6 adaptables aux spécificités locales</td>
</tr>
<tr>
<td></td>
<td>Phosphate total</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NH₄⁺</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NO₂⁻</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NO₃⁻</td>
<td></td>
</tr>
<tr>
<td>Polluants spécifiques de l’état écologique</td>
<td>Liste et valeurs seuils en annexe 8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eléments de qualité hydromorphologique</th>
<th>Paramètres hydromorphologiques</th>
<th>Indicateurs disponibles à utiliser pour l’évaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Régime hydrologique</td>
<td>Quantité et dynamique du débit d’eau</td>
<td>Informations disponibles sur les pressions hydromorphologiques issues du dispositif PRHYMO</td>
</tr>
<tr>
<td></td>
<td>Connexion aux masses d’eau souterraines</td>
<td></td>
</tr>
<tr>
<td>Continuité de la rivière</td>
<td>-</td>
<td>Informations disponibles sur les pressions hydromorphologiques issues du dispositif PRHYMO et indicateurs ‘taux de fractionnement’ et ‘taux d’étagement’ pour la continuité longitudinale ***</td>
</tr>
<tr>
<td>Conditions morphologiques</td>
<td>Variation de la profondeur et de la largeur de la rivière</td>
<td>Informations disponibles sur les pressions hydromorphologiques issues du dispositif PRHYMO et résultats et indicateurs issus du dispositif de surveillance CARHYCE</td>
</tr>
<tr>
<td></td>
<td>Structure et substrat du lit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Structure de la rive</td>
<td></td>
</tr>
</tbody>
</table>

En rouge : indicateurs non disponibles
En jaune : pas d’indicateur validé – des dispositifs et/ou indices sont toutefois disponibles afin d’aiguiller le diagnostic
En vert : indicateurs disponibles
En gris : éléments de qualité non pertinents

* Indicateurs spécifiques à une ou plusieurs typologies de cours d’eau (par exemple grand et très grands cours d’eau)
** dispositif transitoire sur l’HER 9A permettant l’utilisation temporaire de l’IBGN sur ce territoire, en lieu et place de l’I2M2
2.2.2. Élément de qualité plans d’eau
Pour l’évaluation de l’état écologique des plans d’eau, les indices biologiques, valeurs-seuils et règles de calcul à appliquer sont les suivants :

2.2.2.1. Éléments de qualité biologique

Pour la France hexagonale et la Corse :

(i) **Indices et valeurs-seuils**

NB : Les différents indices mentionnés ci-après sont à utiliser dans les limites d’application de leur méthode : se reporter notamment à l’annexe 9 ci-après, ainsi qu’au tableau 3 de l’annexe 1 de l’arrêté « surveillance » du 25 janvier 2010 modifié qui précise la pertinence des éléments de qualité biologique selon les types de plans d’eau.

- **Phytoplancton : indice phytoplancton lacustre (IPLAC – code Sandre 1017)**
 Cet indice s’applique aux lacs naturels et aux plans d’eau fortement modifiés et artificiels de France hexagonale et de Corse. Les limites de classes à prendre en compte sont celles mentionnées dans la table de l’annexe 9.

- **Invertébrés : indice macroinvertébré lacustre (IML – codes Sandre 8965 (IML E-PE) ou 8969 (IML PE))**
 Cet indice s’applique aux plans d’eau naturels, fortement modifiés et artificiels de France hexagonale et de Corse. Il est en réalité décliné en deux indices différents selon le type de plans d’eau :
 - L’IML E-PE est utilisé pour les plans d’eau naturels, et pour les plans d’eau fortement modifiés ou artificiels dont le marnage maximal moyen annuel est inférieur à deux mètres ;
 - L’IML PE est utilisé pour les plans d’eau fortement modifiés ou artificiels dont le marnage maximal moyen annuel est supérieur à deux mètres : il prend en compte le marnage de ces plans d’eau comme contrainte technique obligatoire, en l’intégrant dans les conditions de référence. Les limites de classe à prendre en compte sont celles mentionnées dans la table de l’annexe 9.

- **Diatomées : indice biologique diatomées en lac (IBDL – code Sandre 8973)**
 Cet indice s’applique aux plans d’eau naturels, fortement modifiés et artificiels de France hexagonale et de Corse. Les limites de classe à prendre en compte sont celles mentionnées dans la table de l’annexe 9.

- **Macrophytes : indice biologique macrophytique en lac (IBML – code Sandre 1020)**
 Cet indice s’applique aux plans d’eau naturels de France hexagonale et de Corse. Bien que techniquement applicable aux plans d’eau d’origine anthropique, l’IBML n’est pas utilisé pour évaluer le potentiel écologique des MEFM/MEA conformément aux dispositions de l’arrêté évaluation (voir chapitre 2.6 et 2.7 ci-après). Les limites de classes à prendre en compte sont celles mentionnées dans la table de l’annexe 9.

- **Poissons :**
 - **indice ichthyofaune lacustre (IIL – code Sandre 1018)**
 Cet indice s’applique aux plans d’eau naturels de France hexagonale et de Corse de la typologie nationale des plans d’eau. Il ne s’applique pas aux plans d’eau d’origine anthropique de la typologie nationale ni aux RUP.
 Les limites de classes à prendre en compte sont celles mentionnées dans la table de l’annexe 9.
 - **indice ichthyofaune retenue (IIR – code Sandre 1095)**
 Cet indice s’applique aux plans d’eau d’origine anthropique (fortement modifiés et artificiels) de France hexagonale et de Corse. Il ne s’applique pas aux plans d’eau naturels. Les limites de classe à prendre en compte sont celles mentionnées dans la table de l’annexe 9.
(ii) **Modalités de calcul.**
Pour chaque paramètre, on calculera la moyenne des indices obtenus à partir des données acquises lors des six dernières années, par exemple de 2018 à 2023 pour les cartes à inclure dans les états des lieux 2025.
Pour les RUP :

Aucun indice biologique n’est disponible. L’évaluation se fera donc par expertise avec l’appui technique de l’OFB pour les éléments de qualité biologique pertinents conformément à l’arrêté « surveillance », à savoir :
- Le phytoplancton uniquement, pour les plans d’eau de Guadeloupe, de Martinique et de La Réunion ;
- Le phytoplancton, les invertébrés et l’ichtyofaune pour le plan d’eau de Guyane.

Seule l’île de la Réunion est concernée par un plan d’eau considéré comme une masse d’eau naturelle (Le grand Étang – plan d’eau endoréique).

2.2.2.2. Eléments de qualité physico-chimiques généraux

(i) paramètres et valeurs-seuils

Les paramètres\(^{15}\) et valeurs-seuils à prendre en compte sont ceux mentionnés en annexe 3 de l’arrêté évaluation, rappelés en annexe 10 du présent guide.

Les éléments de qualité concentration en nutriments et transparence interviennent en soutien à la biologie.
L’élément de qualité concentration en nutriments est composé des paramètres phosphore total, nitrates et ammonium.
L’élément de qualité transparence repose sur un seul paramètre : la profondeur minimale (en cm) à partir du miroir de l’eau pour laquelle le disque de Secchi (disque blanc de 20 cm de diamètre) cesse d’être visible.

Les limites de classes pour les paramètres constitutifs des éléments de qualité concentration en nutriments et transparence varient en fonction de la profondeur moyenne théorique (métrique définie comme étant égale à la division du volume par la surface) des plans d’eau.

Pour le paramètre phosphore total, les valeurs-seuils limites de classes d’état prennent en compte une marge de sécurité :
- qui tient compte des incertitudes de prédiction des modèles statistiques entre les paramètres physico-chimiques et l’IPLAC ;
- qui déclasse les plans d’eau sur la base de la physico-chimie seulement si la probabilité que le phosphore soit à l’origine du déclassement de l’IPLAC est d’au moins 66 %.

Il en résulte que les valeurs-seuils du paramètre phosphore total sont mécaniquement plus tolérantes que celles de l’IPLAC.

En outre, le fait de prendre en compte la valeur médiane peut conduire, selon les mesures disponibles, à des valeurs faibles et non déclassantes en décalage avec l’état donné par l’IPLAC. Ainsi, lorsque l’indice IPLAC est déclassant, sans que le paramètre phosphore ne soit déclassant, alors une expertise sur la distribution des valeurs est à réaliser et la limite de classe d’état calculée pour le phosphore pourra être considérée comme indicative.

Il convient de noter que les orthophosphates n’ont pas été retenus parmi les nutriments pertinents pour l’évaluation. En effet, selon les épisodes plus ou moins rapides de croissance des végétaux, les phosphates peuvent arriver abondamment dans un plan d’eau du fait des activités anthropiques, sans pour autant que leur concentration à un instant donné soit élevée s’ils sont mesurés après un

\(^{15}\) Comme pour les cours d’eau, en l’état actuel des connaissances, les limites de classes sont exprimées par paramètre et non par élément de qualité.
événement de croissance. La fréquence relativement faible de suivi des conditions physico-chimiques dans les réseaux (i.e. quatre campagnes annuelles, une ou deux année(s) par plan de gestion) vis-à-vis de la vitesse de consommation des orthophosphates ne permet pas d’avoir une image globale objective de la quantité de phosphates bio-disponible dans les plans d’eau, et donc, de leur niveau d’eutrophisation.

Pour le paramètre nitrates, les valeurs-seuils de limites de classes de l’état dépendent à la fois du temps de résidence des plans d’eau et de leur profondeur moyenne théorique (métrique définie comme étant égale à la division du volume par la surface).

Le temps de résidence est estimé en divisant le volume connu du plan d’eau par le débit connu en sortie ou estimé par la surface du bassin versant.

Pour les plans d’eau dont le temps de résidence est inférieur ou égal à 30 jours, les valeurs-seuils limites de classes à prendre en compte sont celles applicables aux cours d’eau afin de ne pas introduire de distorsion entre l’évaluation de leur état et l’évaluation de l’état des cours d’eau les alimentant.

Pour les plans d’eau dont le temps de résidence est supérieur à 30 jours, les valeurs-seuils limites de classes pour les nitrates sont celles figurant en annexe 10 du présent document soit pour le seuil bon/moyen une valeur maximale de :
- 5,3 mg/l pour les plans d’eau d’une profondeur moyenne inférieure ou égale à 15 m ;
- 2,6 mg/l pour les plans d’eau d’une profondeur moyenne supérieure à 15 m.

Toutefois, cette valeur pour le seuil bon-moyen peut être portée à 13 mg/l (quelle que soit la profondeur du plan d’eau) lorsque les pressions anthropiques affectant la concentration en nitrates du plan d’eau sont nulles ou faibles sur le bassin versant et lorsque les indicateurs biologiques témoignent de façon robuste d’un état bon ou très bon. Pour considérer que les indicateurs biologiques témoignent de façon robuste d’un état bon ou très bon, les conditions ci-après doivent être réunies :
- tous les éléments de qualité biologique pertinents sont évalués (y compris l’IBML pour les MEFM/MEA pour les typologies pertinentes lorsque le marnage est inférieur à 2 m) et sont en état bon ou très bon ;
- disposer d’au moins deux années de suivi pour le phytoplancton et la physico-chimie lors des six années consécutives les plus récentes prises en compte ;
- les deux calculs de l’IPLAC sur cette période (sans faire la moyenne) donnent un état bon ou très bon.

La valeur seuil état bon/moyen pour le paramètre bilan d’oxygène est donnée à titre indicatif.

Pour les paramètres température de l’eau, salinité et état d’acidification, aucune valeur n’a pu être établie à ce stade des connaissances.

(ii) Modalités de calcul

L’état de chaque paramètre est évalué selon les modalités décrites en annexe 10, à partir des données acquises lors des six dernières années, par exemple de 2018 à 2023 pour les cartes des états des lieux 2025.

- Pour les paramètres phosphore total et profondeur du disque de Secchi, les évaluations par plan de gestion sont faites sur la base des valeurs médianes de l’ensemble du jeu de données, ceci pour limiter le poids d’évaluations annuelles exceptionnelles et non représentatives de l’état moyen sur le plan de gestion (e.g. conditions hydro-climatiques pour les plans d’eau à court temps de séjour).
• Pour les paramètres ammonium et nitrates, les évaluations par plan de gestion sont faites sur la base des valeurs maximales de l’ensemble du jeu de données. Les concentrations maximales ont été choisies en raison de la plus grande significativité de la réponse aux métriques de l’IPLAC pour l’ammonium et de la plus grande significativité de la réponse à l’occupation du sol de type agriculture pour les nitrates. De plus, pour les nitrates, la concentration maximale est représentative de la capacité productive des lacs.

2.2.2.3. Polluants spécifiques de l’état écologique (PSEE)
Les principes définis pour les cours d’eau sont applicables aux plans d’eau (voir annexe 8 pour la liste des substances et NQE).

Modalités de mesure des polluants spécifiques de l’état écologique :
• Si la profondeur maximale du plan d’eau est inférieure à 5 m, la mesure des PSEE doit être effectuée sur un prélèvement intégré sur la zone euphotique.
• Si la profondeur maximale du plan d’eau est supérieure ou égale à 5 m, la mesure des PSEE doit être effectuée : 1) sur un prélèvement intégré sur la zone euphotique ET 2) dans les cas où la profondeur maximale du plan d’eau est supérieure à la profondeur de la zone euphotique, sur un prélèvement ponctuel effectué au fond du plan d’eau.

Lorsque deux prélèvements sont effectués sur un même plan d’eau, la concentration retenue pour évaluer l’élément de qualité PSEE est la concentration la plus importante parmi les deux mesurées.

2.2.2.4. Eléments de qualité hydromorphologique
Les éléments de qualité hydrologie et morphologie interviennent en soutien à la biologie.
L’élément de qualité hydrologie est composé des paramètres « quantité et dynamique de flux », « temps de résidence » et « connexion aux eaux souterraines ».
L’élément de qualité morphologie est composé des paramètres « structure et état de la zone littorale », « structure, nature et état du substrat » et « variation de la profondeur ».

L’ensemble de ces éléments de qualité et paramètres hydromorphologiques sont évalués via un unique indice multimétrique : LHYMO (code Sandre 1520). Il s’applique théoriquement aux plans d’eau naturels et d’origine anthropique (fortement modifiés et artificiels) de France hexagonale, de Corse et des RUP.
Cependant, l’indice LHYMO n’est utilisé que pour l’évaluation de l’état écologique des plans d’eau naturels. Pour ces plans d’eau, seule la limite entre le bon état et le très bon état est à prendre en compte pour l’évaluation de l’état d’un plan d’eau. Les autres limites de classe peuvent être utilisées à titre complémentaire pour affiner le diagnostic des plans d’eau naturels.

L’indice LHYMO n’est pas utilisé pour évaluer le potentiel écologique des plans d’eau fortement modifiés ou artificiels. Il peut néanmoins être calculé sur ces masses d’eau, son utilisation est fortement encouragée, afin :
- d’identifier les pressions hydromorphologiques dont l’atténuation est possible sans impacter significativement les contraintes techniques obligatoires ;
- de tester très largement l’indice sur les MEFM/MEA, afin d’avoir un retour d’expérience fourni et d’être en capacité d’émettre un avis argumenté quant à la possibilité d’utiliser LHYMO pour l’évaluation du potentiel écologique lors de l’EDL 2031.

Les limites de classe à prendre en compte sont celles mentionnées dans la table de l’annexe 11.

2.2.2.5. Synthèse des éléments de qualité et indicateurs à prendre en compte pour l’évaluation de l’état écologique des plans d’eau
<table>
<thead>
<tr>
<th>Indicateurs* disponibles à utiliser pour l’évaluation</th>
<th>Hexagone et Corse – plans d’eau naturels</th>
<th>Hexagone et Corse – plans d’eau d’origine anthropique</th>
<th>RUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eléments de qualité biologique</td>
<td>Paramètres biologiques</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phytoplancton</td>
<td>Composition, abondance et biomasse</td>
<td>IPLAC</td>
<td>IPLAC</td>
</tr>
<tr>
<td>Macrophytes</td>
<td>Composition et abondance</td>
<td>IBML</td>
<td>IBML**</td>
</tr>
<tr>
<td>Phytobenthos</td>
<td>Composition et abondance</td>
<td>IBDL</td>
<td>IBDL</td>
</tr>
<tr>
<td>Faune benthique invertée</td>
<td>Composition et abondance</td>
<td>IML E-PE</td>
<td>IML E-PE ou IML PE (selon marage)</td>
</tr>
<tr>
<td>Ichthyofaune</td>
<td>Composition, abondance et structure de l’âge</td>
<td>IIL</td>
<td>IIR</td>
</tr>
<tr>
<td>Elément de qualité physico-chimique</td>
<td>Paramètres physico-chimiques</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transparence</td>
<td>Profondeur du disque de Secchi</td>
<td>Valeurs-seuils en annexe 10</td>
<td>Valeur seuils en annexe 10</td>
</tr>
<tr>
<td>Température de l’eau</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bilan d’oxygène</td>
<td>Désoxygénation de l’hypolimnion</td>
<td>Valeurs-seuils en annexe 10***</td>
<td>Valeurs-seuils en annexe 10***</td>
</tr>
<tr>
<td>Salinité</td>
<td>Conductivité</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorures</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sulfates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>État d’acidification</td>
<td>pH_{min} et pH_{max}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concentration en nutriment</td>
<td>Phosphore total</td>
<td>Valeurs-seuils en annexe 10</td>
<td>Valeur seuils en annexe 10</td>
</tr>
<tr>
<td></td>
<td>NH_{4}</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NO_{3}^{-}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polluants spécifiques de l’état écologique</td>
<td>Liste et valeurs seuils en annexe 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eléments de qualité hydromorphologique</td>
<td>Paramètres hydromorphologiques</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Régime hydrologique</td>
<td>Quantité et dynamique du débit d’eau</td>
<td></td>
<td>LHYMO****</td>
</tr>
<tr>
<td></td>
<td>Connexion aux masses d’eau souterraines</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temps de résidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Variation de la profondeur du lac</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.2.3. Cas des exceptions typologiques et des exceptions locales

Exceptions typologiques :

Certains éléments ou paramètres (de nature biologique, physico-chimique…) ne sont pas pertinents pour évaluer l’état de certains types de masses d’eau. Dans ce cas, ces éléments ou paramètres ne font pas l’objet de collecte de données et ne sont pas considérés pour l’évaluation de l’état des sites et masses d’eau concernés. C’est le cas par exemple des macrophytes pour l’HER 2. Les cas concernés sont explicités en annexe 1 (pertinence des éléments de qualité de l’état écologique des eaux de surface) de l’arrêté « surveillance » du 25 janvier 2010 modifié.

Par ailleurs, certains éléments ou paramètres physico-chimiques sont à adapter aux cas de certains types de milieux particuliers. Ces exceptions typologiques, qui peuvent concerner de manière assez générale une hydro-écorégion ou un groupe de masses d’eau donné (par exemple exception typologique de la température sur l’HER 6 : Méditerranée), sont toutes explicitées dans le présent guide (cf. annexes 1 à 10). Elles peuvent conduire à ne pas considérer l’élément ou paramètre physico-chimique correspondant, ou à en ajuster les valeurs-seuils, pour l’évaluation de l’état des types de masses d’eau concernées[16]. Dans ces cas particuliers, le fait que la valeur de ces éléments ou paramètres soit naturellement influencée sans cause anthropique significative devra pouvoir être justifié.

Exceptions locales :

Certains éléments ou paramètres, ou certaines valeurs-seuils, peuvent s’avérer non pertinents localement, sur certains sites ou certaines masses d’eau, car les valeurs de ces éléments ou paramètres sont naturellement influencés localement sans cause anthropique. Dans ce cas, on ne pourra pas considérer cet élément ou paramètre pour l’évaluation de cette ou de ces masse(s)

Conditions morphologiques

<table>
<thead>
<tr>
<th>Quantité, structure et substrat du lit</th>
<th>LHYSO****</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure de la rive</td>
<td></td>
</tr>
</tbody>
</table>

* Les différents indices sont à utiliser dans les limites d’application de leur méthode : se reporter à l’annexe 9 ci-après, ainsi qu’au tableau 3 de l’annexe 1 de l’arrêté « surveillance » du 25 janvier 2010 modifié qui précise la pertinence des éléments de qualité biologique selon les types de plans d’eau.

** L’indice IBML est applicable aux plans d’eau d’origine anthropique indiqués dans le tableau 3 de l’arrêté surveillance du 25 janvier 2010 modifié et dont le marneage est inférieur à 2 mètres. En revanche, l’IBML n’est pas prescrit pour l’évaluation des MEFM/MEA par l’arrêté « évaluation » du 25 janvier 2010 modifié. A ce stade, l’IBML est à utiliser pour affiner le diagnostic pour les MEFM/MEA.

*** Conformément aux indications de l’annexe 10, pour l’élément de qualité « bilan d’oxygène », la valeur seuil du bon état est donnée à titre indicatif.

**** L’indice LHYSO est applicable aux plans d’eau d’origine anthropique, mais n’est pas prescrit pour l’évaluation des MEFM/MEA par l’arrêté « évaluation » du 25 janvier 2010 modifié. A ce stade, LHYSO est à utiliser pour affiner le diagnostic des MEFM/MEA. Par ailleurs, sur les plans d’eau naturels (MEN), seule la limite entre le bon état et le très bon état est à prendre en compte pour l’évaluation de l’état.

16 A noter que les valeurs-seuils des indices biologiques sont quant à elles adaptées pour les différents types de cours d’eau.

Ainsi, par exemple, l’exception typologique de la température pour les cours d’eau de l’HER 6 : Méditerranée (explicitée en annexe 6 du présent guide) signifie que les valeurs-seuils de température ne sont pas appropriées sur ces types de cours d’eau et ne sont donc pas prises en compte pour l’évaluation de leur état. Les valeurs-seuils des indices biologiques sont quant à elles adaptées à ces types de masse d’eau et sont à prendre en compte comme précisé dans les annexes 1, 2 et 3 du présent guide.
d’eau ou en ajuster les valeurs-seuils. Ces exceptions locales devront être dûment justifiées par un argumentaire scientifique et technique montrant la cause naturelle et l’absence d’influence anthropique sur cet élément ou paramètre. Contrairement aux exceptions typologiques, les exceptions locales ne peuvent quant à elles concerner qu’un nombre marginal de masses d’eau ou de stations sur un type donné.

La liste complète des cas relevant de ces exceptions locales, les justifications techniques correspondantes, ainsi que leur actualisation éventuelle, sont établies et validées par le secrétariat technique de bassin (STB) et transmises à la DEB pour information. Ces éléments doivent également renseigner les référentiels SANDRE concernés (référentiel des stations/points de prélèvement et référentiels des sites d’évaluation).

Ces exceptions sont applicables à l’échelle de la masse d’eau et à celle de la station.

Pour un gestionnaire local, il conviendra donc de se référer à la liste des exceptions validée par le STB pour la carte de l’état des masses d’eau la plus récente publiée dans un document de planification adopté par le comité de bassin (état des lieux ou SDAGE).

2.2.4. Situation de lacunes dans les outils d’interprétation

Il s’agit des cas où l’on ne dispose pas des valeurs-seuils d’un élément de qualité pour interpréter les données disponibles. Dans ce cas, ces données sont utilisées pour appuyer l’expertise et, le cas échéant, évaluer l’état de cet élément de qualité au regard des définitions normatives du bon état données par la DCE et l’arrêté évaluation (annexe I).
2.3. **Règles d’agrégation des éléments de qualité**

2.3.1. **Principes généraux et rôle des différents éléments de qualité dans la classification de l’état écologique**

Selon les termes de la DCE, lorsque les valeurs-seuils des différents éléments sont établies conformément aux prescriptions de la DCE, la règle d’agrégation qui s’impose est celle du **principe de l’élément déclassant**, au niveau de l’élément de qualité.

Le rôle des différents éléments de qualité (biologiques, physico-chimiques et hydromorphologiques) dans la classification de l’état écologique est différent pour la classification en état écologique très bon, bon, moyen, médiocre et mauvais.

Le **schéma suivant** indique les **rôles respectifs des éléments de qualité** biologiques, physico-chimiques et hydromorphologiques **dans la classification de l’état écologique**, conformément aux termes de la DCE (définitions normatives de l’annexe V.1.2).

* L’état physico-chimique est très bon si :
 - les paramètres physico-chimiques généraux respectent le très bon état ;
 - pour les polluants spécifiques non synthétiques : la concentration est inférieure aux limites de quantification indiquées dans la version en vigueur de l’avis relatif aux limites de quantification des couples paramètre-matrice de l’agrément des laboratoires effectuant des analyses dans le domaine de l’eau et des milieux aquatiques. En complément il est possible de tenir compte lors de l’évaluation des concentrations de fonds géochimiques naturels ;

17 Les éléments de qualité physico-chimiques incluent à la fois les éléments physico-chimiques généraux et les polluants spécifiques de l’état écologique.

18 Ce schéma est inspiré du document guide « approche générale de la classification de l’état écologique et du potentiel écologique, ECOSTAT, nov. 2003 ».

- pour les polluants spécifiques synthétiques : la concentration correspond à une mesure non quantifiée et la limite de quantification respecte la version en vigueur de l’avis relatif aux limites de quantification des couples paramètre-matrice de l’agrément des laboratoires effectuant des analyses dans le domaine de l’eau et des milieux aquatiques.

Correspondre aux conditions de référence pour un élément de qualité biologique donné signifie que la valeur estimée pour cet élément de qualité biologique se situe au-dessus de la limite inférieure du très bon état.

Selon les termes de la DCE, l’attribution d’une classe d’état écologique très bon ou bon est déterminée par les valeurs des contrôles des éléments biologiques, physico-chimiques (paramètres physico-chimiques généraux et polluants spécifiques de l’état écologique) sur les éléments de qualité pertinents pour le type de masse d’eau considéré, et hydromorphologiques dans le cas où tous les éléments biologiques et physico-chimiques correspondent au très bon état.

L’attribution d’une classe d’état écologique moyen est obtenue :
- lorsqu’un ou plusieurs des éléments biologiques est (sont) classé(s) moyen(s), les éventuels autres éléments biologiques étant classés bons ou très bons
- ou lorsque tous les éléments biologiques sont classés bons ou très bons, et que l’un au moins des éléments physico-chimiques généraux ou des polluants spécifiques correspond à un état moins que bon

L’attribution d’une classe d’état écologique médiocre ou mauvais est déterminée uniquement par les classes d’état des éléments de qualité biologique.

Ainsi, en particulier, lorsqu’au moins un élément de qualité biologique est en état moyen, médiocre ou mauvais, les éléments de qualité physico-chimique n’ont pas d’incidence sur le classement de l’état écologique. Dans ce cas, la classe d’état attribuée est celle de l’élément de qualité biologique le plus déclassant.

Exemple 1 : lorsque l’ensemble des éléments de qualité sont en état bon à l’exception d’un élément de qualité biologique en état médiocre, alors l’état écologique sera médiocre.

Exemple 2 : lorsque l’ensemble des éléments de qualité sont en état bon à l’exception d’un élément de qualité physico-chimique en état moyen, alors l’état écologique sera moyen.

Exemple 3 : lorsque l’ensemble des éléments de qualité sont en état moyen à l’exception d’un élément de qualité physico-chimique en état médiocre, alors l’état écologique sera moyen.

NB : en l’absence de données biologiques, aucun état écologique ne sera calculé, à moins qu’une extrapolation spatiale ne soit possible. Se référer à l’annexe 12.

2.3.2. Application pratique

En pratique, dans l’attente des résultats finalisés des travaux de définition de l’état écologique, qui conduiront à établir les valeurs-seuils de l’ensemble des éléments de qualité conformément aux prescriptions de la DCE, les règles d’agrégation à appliquer sont présentées ci-après.

2.3.2.1. Agrégation des paramètres au sein des éléments de qualité physico-chimiques généraux

Par analogie avec le principe de l’élément déclassant imposé par la DCE au niveau des éléments de qualité, lorsque plusieurs paramètres interviennent pour le même élément de qualité physico-

20 C’est à dire moyen, médiocre ou mauvais pour un élément de qualité physico-chimique général ; non respect de la NQE pour un polluant spécifique de l’état écologique.
Un élément de qualité physico-chimique général, pour lequel plusieurs paramètres interviennent et qui est déclassé par un seul paramètre, pourra être considéré comme en bon état (ou très bon), lorsque les deux conditions suivantes sont réunies :

- tous les éléments biologiques et les autres éléments physico-chimiques sont classés dans un état bon (ou très bon) ;
- la valeur observée du paramètre déclassant ne dépasse pas la valeur-seuil fixée pour ce paramètre à la limite de la classe immédiatement inférieure. En d’autres termes, un paramètre pourrait être considéré en classe bon si sa valeur observée reste au sein de la classe moyen (la valeur observée ne va pas au-delà de la limite moyen/médiocre) ; un paramètre pourrait être considéré en classe très bon si sa valeur observée reste au sein de la classe bon (la valeur observée ne va pas au-delà de la limite bon/moyen).

Dans ce cas, le paramètre physico-chimique déclassant sera classé en classe moyen et l’élément de qualité correspondant sera classé en état bon (respectivement le paramètre sera classé bon et l’élément de qualité très bon).

Exception : pour l’élément de qualité nutriment des cours d’eau, cette disposition ne s’applique pas au paramètre nitrates. Une masse d’eau dont le paramètre nitrates est classé en état moins que bon (concentration supérieure à 50 mg/l) est classée en état moyen pour l’élément de qualité nutriments.

NB : en l’absence de données physico-chimiques, la classe de l’état écologique est égale à la classe de l’élément de qualité biologique.

2.3.2.2. Agrégation au sein de l’élément de qualité polluants spécifiques de l’état écologique

Conformément aux principes de la DCE, le bon état est atteint lorsque l’ensemble des polluants spécifiques de l’état écologique respectent leurs normes de qualité environnementale.

2.3.2.3. Agrégation entre éléments de qualité

Pour l’agrégation entre éléments de qualité, on appliquera le principe de l’élément déclassant, compte-tenu des principes généraux énoncés précédemment et des règles d’agrégation entre éléments de qualité de même nature.

2.3.2.4. Cas particulier de la classification en très bon état écologique

Pour la classification en très bon état écologique, la DCE requiert des conditions pas ou peu perturbées au niveau biologique, hydromorphologique et physico-chimique.

Pour les paramètres physico-chimiques, les valeurs-seuils du très bon état doivent être adaptées aux différents types de cours d’eau et de plans d’eau. Ainsi :

- pour les cours d’eau, les connaissances actuelles ne permettent pas de fournir des valeurs fiables pour cette limite. Les valeurs fournies dans le présent guide sont à considérer à titre indicatif ;
Pour les plans d’eau, des valeurs fiables ont été déterminées pour les éléments de qualité concentration en nutriments (phosphore total, ammonium et nitrates) et transparence mais pas pour la température, le bilan d’oxygène et la salinité.

Pour les paramètres hydromorphologiques, la classification en très bon état écologique requiert des conditions hydromorphologiques peu ou pas perturbées (morphologie, régime hydrologique, continuité pour les cours d’eau). Pour mémoire, ces conditions peu ou pas perturbées sont définies par la DCE de la manière suivante :

<table>
<thead>
<tr>
<th>Élément de qualité</th>
<th>Très bon état pour les cours d’eau</th>
<th>Très bon état pour les plans d’eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Régime hydrologique</td>
<td>La quantité et la dynamique du débit, et la connexion résultante aux eaux souterraines, correspondent totalement ou presque totalement aux conditions non perturbées.</td>
<td>La quantité et la dynamique du débit, le niveau, le temps de résidence et la connexion résultante aux eaux souterraines correspondent totalement ou presque totalement aux conditions non perturbées.</td>
</tr>
<tr>
<td>Continuité de la rivière</td>
<td>La continuité de la rivière n’est pas perturbée par des activités anthropogéniques et permet une migration non perturbée des organismes aquatiques et le transport de sédiments.</td>
<td></td>
</tr>
<tr>
<td>Conditions morphologiques</td>
<td>Les types de chenaux, les variations de largeur et de profondeur, la vitesse d’écoulement, l’état du substrat et tant la structure que l’état des rives correspondent totalement ou presque totalement aux conditions non perturbées.</td>
<td>Les variations de profondeur du lac, la qualité et la structure du substrat ainsi que la structure et l’état des rives correspondent totalement ou presque totalement aux conditions non perturbées.</td>
</tr>
</tbody>
</table>

En synthèse, et dans l’attente de la détermination des indicateurs et valeurs-seuils pertinents pour l’ensemble des éléments de qualité physico-chimiques et hydromorphologiques, la classification en très bon état écologique d’une station ou d’une masse d’eau est possible lorsque les conditions suivantes sont réunies :
- pour les cours d’eau :
 - l’ensemble des éléments de qualité biologiques pertinents sont en très bon état ;
 - l’ensemble des éléments de qualité physico-chimiques sont pas ou très peu perturbés par des pressions anthropiques
 - l’ensemble des éléments de qualité hydromorphologiques sont en très bon état suivant les définitions normatives rappelées dans le tableau ci-dessus (i.e. pas ou très peu de perturbations hydromorphologiques résultant de pressions anthropiques). Cette évaluation prendra en compte les informations disponibles sur les pressions hydromorphologiques, notamment celles issues de PRHYMO, en lieu et place des dispositifs SYRAH-CE et RHUM, une fois que le dispositif PRHYMO sera paru et validé. En complément de PRHYMO, les informations issues des résultats et indicateurs issus de CARHYCE doivent également être pris en compte dans l’évaluation de la qualité hydromorphologique, lorsque disponibles et pertinents.
 - concentrations en PSEE non synthétiques inférieures aux limites de quantifications listées dans l’avis relatif aux limites de quantification des couples paramètre-matrice de l’agrément des laboratoires en vigueur ;
 - concentrations en PSEE synthétiques non quantifiées et limite de quantification respectant l’avis relatif aux limites de quantification des couples paramètre-matrice de l’agrément des laboratoires en vigueur.
- pour les plans d'eau :
 - l'ensemble des éléments de qualité biologiques pertinents sont en très bon état ;
 - les éléments de qualité concentration en nutriments et transparence sont en très bon état ;
 - l'état hydromorphologique fourni par l'indicateur LHYMO est très bon ;
 - pas ou très peu de perturbations des autres éléments de qualité physico-chimique résultant de pressions anthropiques ;
 - concentrations en PSEE non synthétiques inférieures aux limites de quantifications listées dans l'avis relatif aux limites de quantification des couples paramètre-matrice de l'agrément des laboratoires en vigueur ;
 - concentrations en PSEE synthétiques non quantifiées et limite de quantification respectant l'avis relatif aux limites de quantification des couples paramètre-matrice de l'agrément des laboratoires en vigueur.
2.3.3. Cas des situations de lacunes de données de surveillance

Plus généralement, lorsque les données de surveillance disponibles ne permettent pas d’attribuer un état à tout ou partie des éléments de qualité pertinents pour le type de masses d’eau considéré, l’état écologique est attribué en corroborant ces données de surveillance par l’ensemble des autres données et connaissances mobilisables :
- sur l’état de la station ou de la masse d’eau ;
- sur les pressions qui s’y exercent et sur leurs impacts sur la structure et le fonctionnement de l’écosystème associé.

En particulier, la période de recherche de données de surveillance doit être élargie afin d’apporter de la donnée mesurée lorsqu’elle existe et qu’elle est significative (représentative de la station ou de la masse d’eau, recueillie avec un protocole DCE-compatible, et à condition qu’il n’y ait pas eu de modification significative de la donnée suite à une amélioration - travaux de restauration - ou une dégradation - rejet nouveau ou modification hydromorphologique). Les résultats fournis par ces données sont alors nécessairement corroborés à dire d’expert au regard des différents types de pressions s’exerçant sur la station ou la masse d’eau, notamment de pollution et hydromorphologiques, pour attribuer un état.

Les modalités de recours à ces données complémentaires sont décrites dans l’annexe 12 du présent guide, qui décrit les principes à appliquer pour évaluer l’état écologique de chaque masse d’eau selon les données et outils disponibles, comme défini à l’annexe 10 (§ 2.1) de l’arrêté évaluation.

2.4. Attribution d’un état écologique à l’échelle de la masse d’eau

Les principes et règles énoncés dans les sections précédentes permettent l’attribution d’un état à l’échelle d’une station d’évaluation, selon différents niveaux d’agrégation (état d’un paramètre, d’un élément de qualité, état écologique agrégé).

Pour autant, certaines masses d’eau ne sont pas directement suivies alors que d’autres disposent de plusieurs stations d’évaluation. Pour ces deux cas, les modalités d’évaluation de l’état écologique sont précisées en annexe 12.

2.5. Attribution d’un niveau de confiance

La DCE impose d’estimer le niveau de confiance des résultats fournis par les programmes de surveillance et de les indiquer dans les plans de gestion des districts hydrographiques. Il s’agit d’attribuer un niveau de confiance à l’état écologique d’une masse d’eau (état de la masse d’eau évalué à partir de tous les éléments de qualité pertinents et non élément de qualité par élément de qualité, i.e. selon les règles d’agrégation entre éléments de qualité et les modalités de prise en compte des aspects spatiaux énoncées précédemment).

2.6. Cas des masses d’eau fortement modifiées (MEFM)

La classification du potentiel écologique des masses d’eau fortement modifiées (MEFM) s’établit en quatre classes : bon et plus ; moyen ; médiocre ; mauvais.

2.6.1. Principes généraux

Dans l’attente d’une amélioration de la définition des classes de potentiel écologique selon une démarche DCE-compatible, l’évaluation du potentiel écologique des MEFM est définie par une méthode mixte croisant certaines données disponibles relatives à l’état écologique, pour les

22 Les travaux d’intercomparaison du bon potentiel sont en cours au sein du groupe de travail européen Ecostat, mais ont déjà abouti à un document d’orientation CIS n°37 : « Les étapes de la définition et de l’évaluation du potentiel écologique pour améliorer la comparabilité des masses d’eau fortement modifiées ».

35
éléments de qualité dont les références du potentiel écologique maximal sont disponibles et une démarche alternative fondée sur les mesures d’atténuation des impacts, c’est à dire la réduction des pressions hydromorphologiques sans impacter significativement l’usage de la MEFM/MEA (i.e. les contraintes techniques obligatoires (CTO)).

Cette démarche définit les valeurs correspondant au bon potentiel écologique comme étant celles obtenues dans une situation où sont mises en œuvre toutes les mesures ou combinaison de mesures d’atténuation des impacts qui :
- ont une efficacité significative sur la qualité et la fonctionnalité de la masse d’eau (y compris, par exemple, des mesures concernant l’amélioration des modes de gestion hydraulique ou la maîtrise des flux de nutriments pour contenir l’eutrophisation) ;
- sont techniquement et socio-économiquement faisables sans remettre en cause le (ou les) usage(s) à la base de la désignation comme MEFM, c’est-à-dire qui tiennent compte des contraintes techniques obligatoires (CTO) pour la pratique de cet(ces) usage(s)).

A cet égard, il convient de souligner que l’existence d’une contrainte technique obligatoire dans un domaine (par exemple une contrainte de marnage fort saisonnier) n’empêche pas la mise en œuvre de mesures d’atténuation des impacts dans ce même domaine (par exemple des modalités de gestion du niveau d’eau d’une retenue limitant l’impact sur les communautés aquatiques).

De plus, comme mentionné précédemment, des mesures peuvent être nécessaires, même lorsque le bon potentiel d’une masse d’eau est atteint, afin de respecter l’objectif de non dégradation de cette masse d’eau ou pour respecter ou atteindre le bon état/potentiel d’autres masses d’eau.

2.6.2. Application pratique

Pour appliquer cette démarche alternative sans procéder à une analyse au cas par cas, il convient de s’appuyer sur une typologie de cas MEFM (grand type de masse d’eau x type d’ouvrage ou d’aménagement physique). Les différents types de cas de MEFM sont homogènes en matière d’altérations hydromorphologiques impactant les éléments de qualité biologique. Cette typologie, élaborée au niveau national, constitue le principal cadre d’analyse pour l’identification des contraintes techniques obligatoires par type de cas de MEFM.
Typologie des cas MEFM :

1 Les modifications d’ordre hydrologique ne suffisent pas pour désigner des masses d’eau en MEFM ; les types de cas 8 et 9 concernent donc des masses d’eau avec des modifications morphologiques liées aux modifications du débit, substantielles, permanentes et étendues au regard de la taille de la masse d’eau.

2 Endiguement étroit : inférieure à deux fois la largeur de plein bord

3 Endiguement large : supérieur à deux fois la largeur de plein bord

Définition des contraintes techniques obligatoires (CTO) :

Profondeur minimale/maintien d’une ligne d’eau : pour la navigation, la CTO est de disposer d’une profondeur ou hauteur d’eau (mouillage) suffisante, qui se traduit le plus souvent par un maintien de la ligne d’eau constante (régulation hydraulique et barrage/écluses).

Obligation d’un certain débit et chute : la production d’hydroélectricité se base sur la notion de puissance électrique qui est fonction d’un débit, d’une hauteur de chute et du rendement des turbines installées.
Marnage fort saisonnier : sur les retenues cette contrainte est liée au stockage de la ressource pour la production d'hydroélectricité en périodes de forte demande énergétique (hiver ou été) ou le soutien d'étiage.

Marnage faible court terme et marnage faible saisonnier : liée à une activité de stockage de la ressource (AEP, irrigation, hydroélectricité).

Volume utilisable : liée à une activité de stockage de la ressource (AEP, irrigation, hydroélectricité, soutien d'étiage).

Régime de restitution : à l'aval des retenues les masses d'eau voient leur cycle hydrologique annuel modifié par les usages de l'eau stockée.

Rectification, déplacement du tracé du CE/Chenal de navigation/Rayon de courbure : pour la navigation, la géométrie du chanal (tracé en plan) est très contrainte, mais il existe une certaine marge de manœuvre entre les paramètres largeur et rayon de courbure. Ainsi, à rayon de courbure plus court, une largeur plus ample est nécessaire. Ces contraintes sont plus ou moins faciles à satisfaire en fonction du gabarit et de l'importance/morphologie du cours d'eau.

Le drainage des sols s’est très souvent accompagné, a minima, d’un recalibrage du cours d’eau, voire d’une rectification. Blocage lit mineur : le blocage du lit mineur n’est en théorie pas indispensable à la navigation, mais dans les faits, étant entendu que le cours d’eau doit passer sous les ponts et passer par les seuils/écluses, la marge de divagation au droit des ouvrages de navigation est quasi nulle.

L’endiguement étroit pour la protection contre les inondations a eu pour but de canaliser les crues et a, de fait, supprimé toutes divagations possibles du lit mineur.

Limitation du champ d’expansion de crues dans des zones à enjeu fort dans les zones les plus vulnérables (par exemple, zones urbanisées). Font partie des CTO les ouvrages qui protègent ces zones.

Prise en compte des données milieux disponibles, en se référant :
- dans le cas des MEFM - cours d’eau : aux indicateurs et valeurs-seuils établis sur les diatomées (cf. annexe 1) et sur les éléments physico-chimiques (cf. annexe 6 relative aux paramètres physico-chimiques généraux et annexe 8 relative aux polluants spécifiques de l’état écologique) en appliquant les règles d’agrégation mentionnées au paragraphe 2.3 ;
- dans le cas des MEFM - plans d’eau : aux indicateurs, valeurs-seuils et lignes directrices établis pour les plans d’eau d’origine anthropique sur le phytoplancton, les invertébrés, les diatomées et les poissons (cf. annexe 9) et sur les éléments physico-chimiques (cf. annexe 10 relative aux paramètres physico-chimiques généraux et annexe 8 relative aux polluants spécifiques de l’état écologique), en appliquant les règles d’agrégation mentionnées au paragraphe 2.3.

Identification des mesures d’atténuation
On considère que les pressions hydromorphologiques identifiées qui n’impactent pas significativement l’usage se traduisent par un effet négatif sur les potentialités biologiques des masses d’eau.

Les mesures spécifiques pour atténuer ces pressions sont à identifier. Elles sont à hiérarchiser en fonction des effets attendus sur la réduction des pressions.

On considère que le potentiel écologique maximal est atteint lorsque l’ensemble des mesures d’atténuation sans impact négatif significatif sur l’usage ont été appliquées (les pressions hors CTO sont alors considérées nulles).
Afin de déterminer si une mesure d’atténuation présente un impact significatif sur l’usage sans procéder à une analyse au cas par cas, il convient, pour les cours d’eau, de s’appuyer sur le tableau des relations usages – altérations – pressions – mesures d’atténuation élaboré au niveau national. Ce tableau identifie en fonction du type de pression hydromorphologique rencontré, les altérations morphologiques possibles engendrées, son (ses) impact(s) sur le milieu et la(les) mesure(s) possible(s) afin d’atténuer la pression. Il permet également d’identifier pour chaque mesure d’atténuation si celle-ci présente un impact négatif significatif potentiel sur l’usage entrainant la désignation en MEFM.

Extrait du tableau des relations usages – altérations – pressions – mesures d’atténuation pour les cours d’eau MEFM (et MEA) :

On considère que le bon potentiel est atteint lorsque, parmi l’ensemble des mesures correspondant au potentiel écologique maximal, toutes les mesures d’atténuation jugées les plus efficaces ont été réalisées.

Attribution de la classe de potentiel écologique selon les principes suivants :

<table>
<thead>
<tr>
<th>Pressions hydromorphologiques identifiées et ne pouvant pas être atténuées sans impacter significativement l’usage de la MEFM/MEA</th>
<th>Très bon</th>
<th>Bon</th>
<th>Moyen</th>
<th>Médiocre</th>
<th>Mauvais</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nulles à faibles</td>
<td>Bon potentiel écologique et plus</td>
<td>Bon potentiel écologique et plus</td>
<td>Potentiel écologique moyen</td>
<td>Potentiel écologique médiocre</td>
<td>Potentiel écologique mauvais</td>
</tr>
<tr>
<td>Moyennes à fortes</td>
<td>Potentiel écologique moyen</td>
<td>Potentiel écologique moyen</td>
<td>Potentiel écologique moyen</td>
<td>Potentiel écologique moyen</td>
<td>Potentiel écologique mauvais</td>
</tr>
</tbody>
</table>

2.7. Cas des masses d’eau artificielles (MEA)

La démarche alternative

démarche alternative fondée sur les mesures d’atténuation des impacts, décrite au paragraphe 2.6.1, pour attribuer un potentiel écologique aux masses d’eau fortement modifiées (MEFM) est transposable aux masses d’eau artificielles (MEA).
3. **RÈGLES D’ÉVALUATION DE L’ÉTAT CHIMIQUE**

3.1. **Données mobilisables**

Pour pouvoir attribuer un état chimique à chacune des masses d’eau, il est indispensable de s’appuyer sur l’ensemble des informations adéquates disponibles. C’est pourquoi, on utilisera prioritairement les données sur les paramètres définissant l’état chimique acquises à partir des réseaux établis dans le cadre de l’application de la DCE (réseau de contrôle de surveillance, contrôles opérationnels, réseau de référence), mais aussi celles issues d’autres réseaux, dès lors que les sites de suivi sont mobilisables pour l’évaluation de l’état d’une masse d’eau, qu’ils sont situés hors zone de mélange et que les protocoles de prélèvement et d’analyse sont conformes à ceux prescrits dans le cadre des réseaux DCE (préconisations de l’arrêté surveillance du 25 janvier 2010 modifié).

L’évaluation de l’état se base sur les données de la campagne de suivi la plus récente. En outre, les résultats des campagnes précédentes pourront également être utilisés afin de vérifier la cohérence et la pertinence de cette dernière année.

3.2. **Indicateurs, valeurs-seuils et modalités de calcul (intégration temporelle par indicateurs)**

3.2.1. **Paramètres et normes de qualité environnementale**

Pour les substances prioritaires ajoutées par la directive 2013/39/UE, les normes de qualité environnementale prennent effet à partir du 22 décembre 2018, c’est-à-dire pour l’état des lieux 2019, en vue d’atteindre un bon état chimique pour ces substances au plus tard le 22 décembre 2027.

Pour les substances prioritaires dont la NQE a été révisée par la directive 2013/39/UE, les normes de qualité révisées ont pris effet le 22 décembre 2015, en vue d’atteindre un bon état chimique pour ces substances au plus tard le 22 décembre 2021.

Un paramètre correspond à une substance ou à un groupe de substances. Sauf indication contraire, la **valeur du paramètre à considérer est la somme des concentrations de tous les isomères** de cette substance ou de ce groupe de substances.

On notera que :
- les NQE sont exprimées en valeur moyenne annuelle (NQE_{MA}) et également pour la plupart des paramètres en concentration maximale admissible (NQE_{CMA}) ;
- des NQE distinctes sont définies pour les eaux douces de surface et pour les eaux côtières et de transition ;
- les NQE sont définies dans la matrice eau et/ou la matrice biote ;
- dans la matrice eau, les NQE s’appliquent sur eau brute, à l’exception des métaux pour lesquels elles se rapportent à la concentration de matières dissoutes, c’est-à-dire à la phase dissoute d’un échantillon d’eau (obtenu par filtration à travers un filtre de 0,45 micromètres ou par tout autre traitement préliminaire équivalent) ;
- dans la matrice biote, les NQE se rapportent à une concentration moyenne annuelle de poids frais ;
- pour les métaux et leurs composés, il est possible de tenir compte :
• de la dureté, du pH ou d'autres paramètres liés à la qualité de l'eau qui affectent la biodisponibilité des métaux, par exemple en utilisant un modèle de calcul de la fraction dissoute biodisponible de type BLM (Biotic Ligand Model). Une note détaillant l'utilisation du modèle BLM sera prochainement disponible sur le site www.eaufrance.fr
• des concentrations de fonds géochimiques naturelles lors de l'évaluation des résultats obtenus au regard des NQE.
Le guide CIS européen No. 38 « Technical Guidance for implementing Environmental Quality Standards (EQS) for metals » précise la prise en compte de ces deux aspects.

Lorsqu'un paramètre ne dispose pas d'une NQE dans le biote, le bon état pour ce paramètre est atteint lorsque l'ensemble des NQE (NQE_CMA et NQE_MA) est respecté. Les modalités de respect des NQE_CMA et NQE_MA sont précisées ci-après.

Lorsqu'un paramètre dispose d'une NQE dans le biote, le bon état pour ce paramètre est atteint lorsque la NQE biote en concentration moyenne annuelle est respectée. Le respect de la NQE-CMA correspondante, si elle existe, doit être vérifié au moins dans les cas où un risque potentiel pour ou via l'environnement aquatique résultant d'une exposition aiguë est constaté sur la base de concentrations ou d'émissions mesurées ou estimées dans l'environnement.

Lorsqu'un paramètre dispose d'une NQE_MA dans l'eau et d'une NQE biote, le respect de la NQE_MA peut être évalué sur l'une ou l'autre de ces normes, en fonction de la matrice qui a été suivie pour ce paramètre. Néanmoins, on utilisera en priorité la NQE biote dans la mesure où il s'agit de la matrice la plus pertinente et compte tenu des valeurs très basses des NQE_MA correspondantes dans l'eau.

Des NQE exprimées en concentration moyenne annuelle pour d'autres matières ou d'autres taxons de biote que ceux précisés ci-dessus et en annexe 14 peuvent être appliquées si les conditions suivantes sont réunies :

- les NQE-MA pour la nouvelle matrice choisie ou le nouveau taxon de biote choisi garantissent au moins le même niveau de protection que les NQE-MA précisées dans le tableau en annexe 14 ;

ET

- la limite de quantification pour la nouvelle matrice choisie ou le nouveau taxon de biote choisi est inférieure à 1/3 de la NQE correspondante et l'incertitude de la mesure associée est inférieure ou égale à 50 % (k=2) au niveau de la norme de qualité environnementale correspondante, OU si ces deux conditions sur la limite de quantification et l'incertitude ne sont vérifiées simultanément pour aucune matrice, alors la surveillance est effectuée à l'aide des meilleures techniques disponibles n'entraînant pas de coûts excessifs, et les performances analytiques sur la nouvelle matrice choisie ou le nouveau taxon de biote choisi sont au moins aussi bonnes que sur la matrice précisée dans le tableau en annexe 14.

3.2.2. Modalités de prélèvement dans le cas des plans d’eau

• Si la profondeur maximale du plan d’eau est inférieure à 5 m, la mesure des substances doit être effectuée sur un prélèvement intégré sur la zone euphotique.
• Si la profondeur maximale du plan d’eau est supérieure ou égale à 5 m, la mesure des substances doit être effectuée : 1) sur un prélèvement intégré sur la zone euphotique ET 2) dans les cas où la

24 Le calcul de la classe de dureté est opéré, dans le cas du cadmium, par la moyenne des concentrations en calcium et magnésium obtenues sur les trois dernières années. En revanche dans le cas du recours aux BLM il est recommandé d’associer préférentiellement à chaque concentration en élément métallique une mesure de dureté du jour (à défaut la moyenne sur 3 ans pourra être utilisée pour combler les données historiques lacunaires).
profondeur maximale du plan d’eau est supérieure à la profondeur de la zone euphotique, sur
un prélèvement ponctuel effectué au fond du plan d’eau.
Lorsque deux prélèvements sont réalisés sur un même plan d’eau, la concentration retenue pour
evaluer la substance est la concentration la plus importante parmi les deux mesurées.

3.2.3. Modalités de calcul

3.2.3.1. Évaluation de l’état d’un paramètre (une substance ou groupe de substances)

3.2.3.1.1. Préambule
Le suivi des polluants dans les eaux ne permet pas d’obtenir une valeur exacte de leur concentration
mais un encadrement de cette valeur :

- d’une part, parce qu’à toute mesure, est liée une incertitude analytique (U) ;
- d’autre part, parce que la résolution analytique des laboratoires est limitée : en-dessous d’un
certain niveau, la concentration d’un polluant ne peut plus être quantifiée, il s’agit de la limite de
quantification (LQ).

Incertitude analytique et limite de quantification varient en fonction des capacités des laboratoires
mais aussi et surtout en fonction des polluants à analyser. La directive 2009/90/CE du 31 juillet 2009
dite QA/QC définit que les méthodes d’analyse doivent permettre d’atteindre des limites de
quantification doivent être inférieures ou égales à 30% des NQE en garantissant une incertitude
élargie de mesure inférieure à 50%. Lorsque ces standards ne peuvent être atteints, il convient
d’utiliser les meilleures techniques disponibles n’entraînant pas de coûts excessifs.

3.2.3.1.2. Respect des normes NQE_CMA et NQE_MA sur eau

i. **NQE_CMA : Norme de qualité environnementale en Concentration Maximale Admissible**

Lorsque le paramètre a été quantifié au moins une fois au cours de l’année\(^{25}\) et que l’on dispose
d’au moins quatre mesures sur cette période, on compare la concentration maximale mesurée dans
l’année à la NQE_CMA :

- si elle lui est supérieure, la NQE-CMA n’est pas respectée
- inversement, si elle lui est inférieure ou égale, la NQE_CMA est respectée.

Dans les cas où le paramètre n’est jamais quantifié au cours de l’année on compare la NQE_CMA à
la limite de quantification maximale du laboratoire pour analyser ce paramètre au cours de l’année
(LQ_max) :

- lorsque la LQ_max est inférieure ou égale à la NQE_CMA, la norme est respectée ;
- lorsque la LQ_max est supérieure à la NQE_CMA on ne se prononce pas.

\(^{25}\) Pour les paramètres correspondant à des groupes de substances, si l’une au moins des substances du paramètre a été quantifiée au
cours de l’année.
La directive 2008/105/CE modifiée prévoit également la possibilité d’utiliser des méthodes statistiques, tel que le calcul des centiles, afin de garantir un niveau acceptable de confiance et de précision dans la détermination de la conformité avec les NQE-CMA (annexe 1, partie B). En l’absence de consensus au niveau national sur l’application de ces méthodes et compte tenu du nombre limité de valeurs utilisées pour évaluer l’état, le recours à ces méthodes n’est pas recommandé.

ii. **NQE_MA : Norme de qualité environnementale en concentration Moyenne Annuelle**

Cas des substances individuelles :
La concentration moyenne annuelle est calculée en faisant la moyenne des concentrations obtenues sur une année. Ce calcul n’est réalisé que si au minimum quatre résultats de mesure sont disponibles.

Dans le calcul de la moyenne, une concentration mesurée inférieure à la limite de quantification est remplacée par cette limite de quantification divisée par deux.

Lorsque la valeur moyenne calculée est inférieure à la limite de quantification maximale, il est fait référence à la valeur en indiquant “inférieure à la limite de quantification”.

Si la limite de quantification maximale est inférieure ou égale à la NQE-MA :
- et que la valeur moyenne calculée est inférieure à la NQE-MA, alors la NQE-MA est respectée ;
- et que la valeur moyenne calculée est supérieure à la NQE-MA, alors la NQE-MA n’est pas respectée.

Si la limite de quantification maximale est supérieure à la NQE-MA :
- et que la valeur moyenne calculée est supérieure ou égale à la limite de quantification, alors la NQE-MA n’est pas respectée ;
- et que la valeur moyenne calculée est strictement inférieure à la limite de quantification, alors le résultat pour la substance mesurée n’est pas pris en compte dans l’évaluation de l’état chimique global de la masse d’eau.

Cas des familles de substances :
Les concentrations de chaque substance faites pour chaque prélèvement sont sommées par famille. Les concentrations mesurées inférieures à la limite de quantification des substances individuelles (à savoir chaque substance de la famille, chaque isomère, métabolite, produit de réaction ou de dégradation) sont remplacées par zéro.

La concentration moyenne annuelle pour la famille est la moyenne de ces sommes.

Si la limite de quantification maximale des substances individuelles de la somme est inférieure ou égale à la NQE-MA :
- et que la valeur moyenne calculée est inférieure à la NQE-MA, alors la NQE-MA est respectée ;
- et que la valeur moyenne calculée est supérieure à la NQE-MA, alors la NQE-MA n’est pas respectée.

Si la limite de quantification maximale des substances individuelles de la somme est supérieure à la NQE-MA :
- et que la valeur moyenne calculée est supérieure ou égale à la limite de quantification, alors la NQE-MA n’est pas respectée ;
- et que la valeur moyenne calculée est strictement inférieure à la limite de quantification, alors le résultat pour la substance mesurée n’est pas pris en compte dans l’évaluation de l’état chimique global de la masse d’eau.

Représentation schématique pour l’évaluation de la conformité à la NQE-MA :
3.2.3.1.3. *Respect des normes sur biote*

Les données mesurées sur l'ensemble du cycle (6 ans) sont utilisées pour évaluer l'état chimique des masses d'eau suivies sur biote. Une note spécifique précisant ces modalités d'évaluation dans le biote est disponible sur le site www.eaufrance.fr (mise à disposition début 2024)
3.2.3.1.4. État du paramètre : agrégation NQE_CMA – NQE_MA ; et respect de la NQE biote

Lorsqu’une norme en concentration maximale admissible existe et qu’elle est pertinente\(^{26}\) on évalue tout d’abord l’état du paramètre au regard de cette NQE_CMA :
- si la NQE_CMA n’est pas respectée alors l’état du paramètre est mauvais ;
- sinon on s’intéresse à la norme en valeur moyenne annuelle (NQE_MA) :
 o lorsqu’elle n’est pas respectée, l’état du paramètre est mauvais ;
 o lorsqu’il n’a pas été possible de se prononcer pour le respect de la NQE_MA, l’état du paramètre est inconnu ;
 o sinon l’état du paramètre est bon.

Lorsqu’aucune NQE_CMA n’est définie pour le paramètre, l’état de ce paramètre dépend uniquement du respect de la NQE_MA ou la NQE biote.

3.2.3.2. Évaluation de l’état chimique à l’échelle d’une station (répondant aux critères énoncés en 3.1)

3.2.3.2.1. État chimique d’une station

L’état chimique de la station en fonction de l’état des paramètres qui définissent l’état chimique des eaux est défini de la manière suivante :
- lorsque l’un au moins de ces paramètres est en mauvais état alors la station est en mauvais état chimique quel que soit l’état des autres paramètres, même si certains d’entre eux ne sont pas connus ;
- lorsque l’ensemble des paramètres est en état inconnu, alors la station est en état inconnu ;
- dans les autres cas, la station est en bon état.

Un nombre minimal de paramètres pour calculer l’état chimique n’est pas fixé, mais le nombre de paramètres entrant dans le calcul (i.e. ayant un nombre d’analyses supérieur ou égal à quatre) est indiqué et influe sur l’indice de confiance.

3.2.3.2.2. État incluant/excluant certaines catégories de substances

En complément des cartes de l’état chimique incluant l’ensemble des substances prioritaires et dangereuses prioritaires, la directive 2008/105/CE modifiée prévoit la possibilité d’établir des cartes additionnelles excluant certaines substances :
- une carte présentant l’état chimique excluant les substances identifiées comme PBT\(^{27}\) ubiquistes (numérotées 5, 21, 28, 30, 35, 37, 43, 44 dans l’annexe 14) ;
- une carte présentant l’état chimique excluant les nouvelles substances prioritaires identifiées par la directive 2013/39/UE (numérotées 34 à 45 dans l’annexe 14) ;
- une carte présentant l’état chimique excluant les substances pour lesquelles une NQE plus stricte a été établie par la directive 2013/39/UE (numérotées 2, 5, 15, 20, 22, 23 et 28 dans l’annexe 14).

Ces différents modes de représentation de l’état chimique doivent permettre de mieux mettre en avant les progrès accomplis et de relativiser l’effet thermomètre liées aux mises à jour régulières des listes de substances et des NQE associées.

\(^{26}\) Lorsqu’une NQE pour le biote ou les sédiments est utilisée, le respect de la conformité à la NQE en concentration maximale admissible (ci après NQE-CMA) doit être vérifié au moins dans les cas où un risque potentiel pour ou via l’environnement aquatique résultant d’une exposition aiguë est constaté sur la base de concentrations ou d’émissions mesurées ou estimées dans l’environnement.

\(^{27}\) PBT : persistante, bioaccumulable et toxique.
Pour aller plus loin sur l’étendue des paramètres de l’état chimique pouvant impacter les organismes vivants, on pourra se référer à l’indicateur gradué et agrégé basé sur la sensibilité de taxons appartenant à 3 niveaux trophiques différents (cf. annexe 12) qui peut également apporter des éléments de réponse pour évaluer l’état des eaux à la station sans que des réponses soient fournies substance par substance.

3.3. **Attribution d’un état à l’échelle d’une masse d’eau**

3.3.1. **Masses d’eau disposant d’une ou plusieurs stations répondant aux critères énoncés au 3.1**

Pour les masses d’eau disposant de plusieurs sites d’évaluation mobilisables pour l’évaluation de l’état de la masse d’eau, l’état chimique de la masse d’eau correspond :
- à l’état chimique de ces stations lorsqu’ils coïncident ;
- sinon, à l’état chimique de la station la plus déclassante.

3.3.2. **Masses d’eau ne disposant pas de stations répondant aux critères énoncés au 3.1**

Pour les masses d’eau ne disposant pas de stations représentatives de la masse d’eau sur lesquelles les méthodes de suivi répondent aux préconisations de l’arrêté surveillance du 25 janvier 2010 modifié établissant le programme de surveillance de l’état des eaux en application de l’article R. 212-22 du code de l’environnement, il sera fait appel à l’ensemble des informations disponibles ou modélisables. On pourra par exemple procéder par analogie (regroupement par masses d’eau cohérentes), par modélisation des pressions ou encore s’appuyer sur le dire d’expert.

3.3.3. **Représentation de l’état d’une masse d’eau**

On associe un code couleur à l’état de chaque masse d’eau. Bleu pour le bon état, rouge pour le mauvais état et gris pour les cas pour lesquels on ne se prononce pas.

Code couleur pour l’état d’une masse d’eau:

<table>
<thead>
<tr>
<th>État</th>
<th>Couleur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bon état</td>
<td>Bleu</td>
</tr>
<tr>
<td>État inconnu</td>
<td>Gris</td>
</tr>
<tr>
<td>Mauvais état</td>
<td>Rouge</td>
</tr>
</tbody>
</table>
3.4. Attribution du niveau de confiance de l’état chimique

Le niveau de confiance attribué à l’état d’une masse d’eau est déterminé de la manière suivante :

<table>
<thead>
<tr>
<th>INFORMATION DISPONIBLE SUR LA MASSE D’EAU</th>
<th>NIVEAU de confiance associé</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masse d’eau suivie directement</td>
<td></td>
</tr>
<tr>
<td>La station est en mauvais état</td>
<td>élevé</td>
</tr>
<tr>
<td>La station est déclassée par une substance disposant d’une NQE dans le biote mais dont l’état n’a pas été évalué sur cette matrice</td>
<td>moyen</td>
</tr>
<tr>
<td>La station est en bon état</td>
<td></td>
</tr>
<tr>
<td>Ét on peut se prononcer sur le bon état d’au moins 80% des 53 polluants incluant benzo(a)pyrène, fluoranthène et DEHP. La station a fait l’objet d’un suivi dans la matrice biote pour les substances disposant d’une NQE définie dans cette matrice.</td>
<td>élevé</td>
</tr>
<tr>
<td>Ét on peut se prononcer sur le bon état de 50 à 80% des 53 paramètres incluant benzo(a)pyrène, fluoranthène et DEHP</td>
<td>moyen</td>
</tr>
<tr>
<td>Ét on ne peut pas se prononcer au bon état d’au moins 50% des polluants</td>
<td>faible</td>
</tr>
<tr>
<td>Ét on ne peut pas se prononcer pour l’un au moins des polluants benzo(a)pyrène, fluoranthène et DEHP</td>
<td></td>
</tr>
<tr>
<td>Masse d’eau non suivie directement</td>
<td></td>
</tr>
<tr>
<td>Il est avéré qu’il n’y a pas de pressions anthropiques, la station est considérée en bon état</td>
<td>moyen</td>
</tr>
<tr>
<td>Des méthodes de modélisation de l’état peuvent être utilisées (par regroupement de masses d’eau, modélisation des pressions...)</td>
<td>faible</td>
</tr>
<tr>
<td>Aucune information n’est disponible (la modélisation n’est pas possible, la masse d’eau ne peut pas être groupée à des masses d’eau similaires pour lesquels on dispose de l’information))</td>
<td>Information insuffisante pour attribuer un état</td>
</tr>
</tbody>
</table>

La fréquence de suivi de certains paramètres de l’état chimique ayant été revue suite au premier cycle de surveillance, certains bassins ne sont plus dans l’obligation de les suivre. Les fréquences par paramètre et par bassin sont indiquées dans l’arrêté surveillance du 25 janvier 2010 modifié établissant le programme de surveillance de l’état des eaux (annexe VI, tableaux 47 pour les cours d’eau et 49 pour les plans d’eau). Dans le cas où un paramètre n’est plus à suivre conformément à cet arrêté, il n’est pas pris en compte dans le calcul de l’indice de confiance.
Annexe 1 : État écologique des cours d’eau – Indices biologiques pour la France hexagonale et la Corse

Indice pour le phytoplancton : Indice pour le phytoplancton : indice phytoplancton en grands cours d’eau (code sandre : 1518)

L’indice IPHYGE s’applique de manière obligatoire sur les cours d’eau naturels (MEN) lorsque cet élément de qualité est défini comme pertinent par l’arrêté du 25 janvier 2010 modifié établissant le programme de surveillance de l’état des eaux (Annexe I, partie 1.3). L’IPHYGE peut également être utilisé comme outil complémentaire (non obligatoire) sur les cours d’eau fortement modifiés (MEFM) et d’origine anthropique (MEA).

La note en EQR se calcule comme suit :

\[
\text{Note en EQR} = \frac{\text{note observée}}{\text{note de référence du type}}
\]

Valeurs inférieures des limites des classes d’état, exprimées en EQR, par type de cours d’eau pour l’IPHYGE

<table>
<thead>
<tr>
<th>Catégories de taille de cours d’eau</th>
<th>Très grands</th>
<th>Grands</th>
<th>Moyens</th>
<th>Petits</th>
<th>Très petits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valeurs inférieures des limites de classe pour l’IPHYGE exprimées en EQR</td>
<td>0,939 - 0,878</td>
<td>0,586 - 0,293</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(a-b-c-d\) : \(a\) = limite inférieure du très bon état, \(b\) = limite inférieure du bon état, \(c\) = limite inférieure de l’état moyen, \(d\) = limite inférieure de l’état médiocre.

En gris foncé : catégories de taille non-pertinentes pour cet élément de qualité biologique.

Indice pour les macrophytes : indice biologique macrophytique en rivière (code Sandre : 2928)

La note en EQR se calcule comme suit :

\[
\text{Note en EQR} = \frac{\text{note observée}}{\text{note de référence du type}}
\]

Valeurs inférieures des limites des classes d’état, exprimées en EQR, par type de cours d’eau pour l’IBMR

<table>
<thead>
<tr>
<th>ÉLÉMENTS DE QUALITE</th>
<th>INDICE</th>
<th>LIMITES DES CLASSES D’ETAT IBMR en EQR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macrophytes</td>
<td>IBMR</td>
<td>[Très bon / Bon] [Bon / Moyen] [Moyen / Médiocre] [Médiocre / Mauvais]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,92 0,77 0,64 0,51</td>
</tr>
</tbody>
</table>

Les valeurs de l’IBMR figurant dans ce tableau ont pris en compte la décision de la commission du 12 février 2018 relative à l’inter-étalonnage.
Valeurs de référence, par type de cours d’eau, pour l’IBMR

<table>
<thead>
<tr>
<th>Hydroécorégions de niveau 1</th>
<th>Cas général, cours d’eau exogène de l’HER de niveau 1 indiquée ou HER de niveau 2</th>
<th>Catégories de taille de cours d’eau</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Très Grands</td>
</tr>
<tr>
<td>20</td>
<td>DEPOTS ARGILO SABLEUX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 21</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>MASSIF CENTRAL NORD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cas général</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>MASSIF CENTRAL SUD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cas général</td>
<td>11,17</td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 19 ou 8</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>DEPRESSIONS SEDIMENTAIRES</td>
<td>11,17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11,17</td>
</tr>
<tr>
<td></td>
<td>Cas général</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 3 ou 21</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>PLAINE SAONE</td>
<td>11,17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11,17</td>
</tr>
<tr>
<td></td>
<td>Cas général</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>JURA / PRE-ALPES DU NORD</td>
<td>11,17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11,17</td>
</tr>
<tr>
<td></td>
<td>Cas général</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTGA1</td>
<td>FLEUVES ALPINS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cas général</td>
<td></td>
</tr>
<tr>
<td>TTGA2</td>
<td>FLEUVES ALPINS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ALPES INTERNES</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PRE-ALPES DU SUD</td>
<td>11,17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11,17</td>
</tr>
<tr>
<td></td>
<td>Cas général</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>MEDITERRANEE</td>
<td>11,17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11,17</td>
</tr>
<tr>
<td></td>
<td>Cas général</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 2 ou 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>CEVENNES</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11,17</td>
</tr>
<tr>
<td></td>
<td>Cas général</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>CORSE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11,17</td>
</tr>
<tr>
<td></td>
<td>Cas général</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>GRANDS CAUSSES</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11,17</td>
</tr>
<tr>
<td></td>
<td>Cas général</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>CAUSSES AQUITAIS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11,17</td>
</tr>
<tr>
<td></td>
<td>Cas général</td>
<td></td>
</tr>
</tbody>
</table>
Indice pour le phytophenthos : indice biologique diatomées
(code Sandre : 5856)

La note en EQR se calcule comme suit :

\[
\text{Note en EQR} = \frac{\text{note observée} - \text{note minimale du type}}{\text{note de référence du type} - \text{note minimale du type}}
\]

Valeurs inférieures des limites des classes d’état, exprimées en EQR, par type de cours d’eau pour l’IBD

Valeurs inférieures des limites de classe de l’IBD

<table>
<thead>
<tr>
<th>Type de Cours d’eau</th>
<th>Limites des classes d’état IBD en EQR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tous types de cours d’eau sauf TGCE > 10 000 km² de bassin versant</td>
<td>Très bon / Bon</td>
</tr>
<tr>
<td></td>
<td>0,94</td>
</tr>
<tr>
<td>Très grands cours d’eau ≥ 10 000 km² de bassin versant (**)</td>
<td>0,92</td>
</tr>
</tbody>
</table>

Les valeurs d’EQR de l’IBD figurant dans ce tableau ont pris en compte la décision de la commission du 12 février 2018 relative à l’inter-étalonnage.
<table>
<thead>
<tr>
<th>Catégories de taille de cours d'eau</th>
<th>Valeur de référence et valeur minimale par type (IBD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroécorégions de niveau 1</td>
<td>Cas général, cours d’eau exogène de l’HER de niveau 1 indiquée ou HER de niveau 2</td>
</tr>
<tr>
<td></td>
<td>Très grands (**) ≥ 10 000 km²</td>
</tr>
<tr>
<td>20</td>
<td>DEPOTS ARGILO SABLEUX</td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 9</td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 21</td>
</tr>
<tr>
<td>21</td>
<td>MASSIF CENTRAL NORD</td>
</tr>
<tr>
<td>3</td>
<td>MASSIF CENTRAL SUD</td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 19</td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 8</td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 19 ou 8</td>
</tr>
<tr>
<td>17</td>
<td>DEPRESIONS SEDIMENTAIRES</td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 3 ou 21</td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 2</td>
</tr>
<tr>
<td>15</td>
<td>PLAINE SAONE</td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 3 ou 21</td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 5</td>
</tr>
<tr>
<td></td>
<td>Cas général</td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 4</td>
</tr>
<tr>
<td>5</td>
<td>JURA / PRE-ALPES DU NORD</td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 2</td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 2 ou 7</td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 7</td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 8</td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 1</td>
</tr>
<tr>
<td>16</td>
<td>FLEUVES ALPINS</td>
</tr>
<tr>
<td></td>
<td>Rhône de l’aval confluence Saône à Lyon jusqu’à l’exutoire</td>
</tr>
<tr>
<td>2</td>
<td>ALPES INTERNES</td>
</tr>
<tr>
<td>7</td>
<td>PRE-ALPES DU SUD</td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 2</td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 2 ou 7</td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 7</td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 8</td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 1</td>
</tr>
<tr>
<td>6</td>
<td>MEDITERRANEE</td>
</tr>
<tr>
<td>8</td>
<td>CŒUVRES</td>
</tr>
<tr>
<td></td>
<td>A-her2 n°70</td>
</tr>
<tr>
<td>16</td>
<td>CORSE</td>
</tr>
<tr>
<td></td>
<td>B-her2 n°88</td>
</tr>
<tr>
<td>19</td>
<td>GRANDS CAUSSES</td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 8</td>
</tr>
<tr>
<td>11</td>
<td>CAUSSES AQUITAIS</td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 3 et/ou 21</td>
</tr>
<tr>
<td></td>
<td>Exogène des HER 3, 8, 11 ou 19</td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 3 ou 8</td>
</tr>
<tr>
<td></td>
<td>Cas général</td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 1</td>
</tr>
<tr>
<td>14</td>
<td>COTEAUX AQUITAIS</td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 3 ou 8</td>
</tr>
<tr>
<td></td>
<td>Cas général</td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 1</td>
</tr>
<tr>
<td>13</td>
<td>LANDES</td>
</tr>
<tr>
<td>1</td>
<td>PYRENEES</td>
</tr>
<tr>
<td>N°</td>
<td>Région</td>
</tr>
<tr>
<td>----</td>
<td>--------</td>
</tr>
<tr>
<td>12</td>
<td>ARMORICAIN</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>TTGL LA LOIRE</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>TABLES CALCAIRES</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>COTES CALCAIRES EST</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>VOSGES</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>ARDENNES</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(*) : Cours d’eau classés TGCE selon la typologie nationale, mais dont la surface intégrée de bassin versant n’atteint pas 10 000 km² au site d’observation.

(**) : Cours d’eau classés TGCE selon la typologie européenne du GIG Large Rivers (tous cours d’eau dont la surface intégrée de bassin versant atteint ou dépasse 10 000 km² au site d’observation.

En grisé : type inexistant.

a-b : a = valeur de référence ; b = valeur minimale.

Les valeurs de l’IBD figurant dans ce tableau ont pris en compte la décision de la commission du 12 février 2018 relative à l’interétalonnage pour les cours d’eau.
Indice pour la faune benthique invertébrée : indice invertébrés multimétrique (code Sandre : 7613)

Cet indice s’applique pour tous les cours d’eau échantillonnés selon le protocole de prélèvement des macro-invertébrés aquatiques en rivières peu profondes (NF T90-333).

Valeurs inférieures des limites des classes d’état, exprimées en EQR, par type* de cours d’eau pour l’I_{2M2}

<table>
<thead>
<tr>
<th>Valeurs inférieures des limites de classe par type* pour l’EQR I_{2M2}</th>
<th>Catégories de taille de cours d’eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroécorégions de niveau 1</td>
<td>Cas général</td>
</tr>
<tr>
<td>20</td>
<td>DEPOTS ARGILO SABLEUX</td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 9</td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 21</td>
</tr>
<tr>
<td>21</td>
<td>MASSIF CENTRAL NORD</td>
</tr>
<tr>
<td>3</td>
<td>MASSIF CENTRAL SUD</td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 19</td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 8</td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 19 ou 8</td>
</tr>
<tr>
<td>17</td>
<td>DEPRESSIONS SEDIMENTAIRES</td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 3 ou 21</td>
</tr>
<tr>
<td>15</td>
<td>PLAINE SAONE</td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 5</td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 4</td>
</tr>
<tr>
<td>5</td>
<td>JURA / PRE-ALPES DU NORD</td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 2</td>
</tr>
<tr>
<td>TTGA1</td>
<td>FLEUVES ALPINS</td>
</tr>
<tr>
<td>TTGA2</td>
<td>ALPES INTERNES</td>
</tr>
<tr>
<td>7</td>
<td>PRE-ALPES DU SUD</td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 2</td>
</tr>
<tr>
<td>6</td>
<td>MEDITERRANEE</td>
</tr>
<tr>
<td></td>
<td>A-her2 n°70</td>
</tr>
<tr>
<td>8</td>
<td>CÉVENNES</td>
</tr>
<tr>
<td></td>
<td>A-her2 n°22</td>
</tr>
<tr>
<td></td>
<td>B-her2 n°88</td>
</tr>
<tr>
<td>16</td>
<td>CORSE</td>
</tr>
<tr>
<td></td>
<td>B-her2 n°88</td>
</tr>
<tr>
<td>19</td>
<td>GRANDS CAUSSES</td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 8</td>
</tr>
<tr>
<td>11</td>
<td>CAUSSES AQUITAINS</td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 3 et/ou 21</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>14</td>
<td>COTEUX AQUITAINS</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>LANDES</td>
</tr>
<tr>
<td>1</td>
<td>PYRENEES</td>
</tr>
<tr>
<td>12</td>
<td>ARMORICAIN</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>TABLES CALCAIRES</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>COTES CALCAIRES EST</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>VOSGES</td>
</tr>
<tr>
<td>22</td>
<td>ARDENNES</td>
</tr>
<tr>
<td>18</td>
<td>ALSACE</td>
</tr>
</tbody>
</table>

* Lorsque plusieurs types d’une même HER sont concernés par une valeur de référence et des valeurs seuils de limites de classes identiques, alors ces types sont regroupés, par souci de simplification, au sein d’une même cellule dans le présent tableau.

a-b-c-d : a = limite inférieure du très bon état, b = limite inférieure du bon état, c = limite inférieure de l’état moyen, d = limite inférieure de l’état médiocre

#: absence de référence.

En grisé : type inexistant
Indice pour la faune benthique invertébrée : indice biologique global normalisé et indice macro-invertébrés grands cours d’eau (code Sandre : 5910 et 6951)

De manière temporaire pour le prochain cycle, il est possible en lieu et place de l’I2M2 pour l’HER 9A d’utiliser l’indice dit « équivalent » (phases A+B) de la méthode macro-invertébrés NF T90-333. L’indice est calculé au moyen des règles de calcul de la méthode IBGN (NF T90-350 – mars 2004) sur les phases A et B de la norme NF T90-333 de septembre 2016 (code Sandre 5910).

L’indice MGCE s’applique pour les cours d’eau dont la taille est très petite à petite (type TP ou P) qui sont échantillonnés selon le protocole de prélèvements des macro-invertébrés aquatiques en rivières profondes et canaux (XP T90-337). Il se calcule comme l’IBGN selon la norme NF T90-350, mais sur l’ensemble des phases A, B et C comprenant les 12 prélèvements élémentaires.

La note en EQR se calcule comme suit :

\[
\text{Note en EQR} = \frac{\text{note observée} - 1}{\text{note de référence du type} - 1}
\]

Valeurs inférieures des limites des classes d’état, exprimées en EQR, par type* de cours d’eau pour l’EQR-équivalent phase (A+B) de l’HER 9 A-her2 n°57 et l’indice MGCE 12 prélèvements des cours d’eau profonds

<table>
<thead>
<tr>
<th>Catégories de taille de cours d’eau</th>
<th>Très Grands</th>
<th>Grands</th>
<th>Moyens</th>
<th>Petits</th>
<th>Très Petits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroécorégions de niveau 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 DÉPOTS ARGILO SABLEUX</td>
<td>Cas général</td>
<td>0,933-0,800-0,533-0,333</td>
<td>0,933-0,800-0,533-0,333</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 9</td>
<td>0,929-0,786-0,571-0,286</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 21</td>
<td>#</td>
<td></td>
<td>0,944-0,778-0,556-0,278</td>
<td></td>
</tr>
<tr>
<td>21 MASSIF CENTRAL NORD</td>
<td>Cas général</td>
<td>#</td>
<td>0,944-0,778-0,556-0,278</td>
<td>0,944-0,778-0,556-0,278</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 19</td>
<td>#</td>
<td></td>
<td>0,94-0,824-0,529-0,294</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 8</td>
<td>#</td>
<td></td>
<td>0,944-0,778-0,556-0,278</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 19 ou 8</td>
<td>0,941-0,824-0,556-0,278</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 MASSIF CENTRAL SUD</td>
<td>Cas général</td>
<td>#</td>
<td>0,944-0,778-0,556-0,278</td>
<td>0,944-0,778-0,556-0,278</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 19</td>
<td>#</td>
<td></td>
<td>0,941-0,824-0,529-0,294</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 8</td>
<td>#</td>
<td></td>
<td>0,944-0,778-0,556-0,278</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 19 ou 8</td>
<td>0,941-0,824-0,556-0,278</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 DEPRESSIONS SEDIMENTAIRES</td>
<td>Cas général</td>
<td>#</td>
<td>0,944-0,778-0,556-0,278</td>
<td>0,944-0,778-0,556-0,278</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 3 ou 21</td>
<td>#</td>
<td></td>
<td>0,944-0,778-0,556-0,278</td>
<td></td>
</tr>
<tr>
<td>15 PLAINE SAONE</td>
<td>Exogène de l’HER 3 ou 21</td>
<td>#</td>
<td></td>
<td>0,944-0,778-0,556-0,278</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 5</td>
<td>#</td>
<td>0,929-0,786-0,571-0,286</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cas général</td>
<td>#</td>
<td>0,929-0,786-0,571-0,286</td>
<td>0,929-0,786-0,571-0,286</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 4</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 JURA / PRE-ALPES DU NORD</td>
<td>Cas général</td>
<td>#</td>
<td>0,929-0,786-0,571-0,286</td>
<td>0,929-0,786-0,571-0,286</td>
<td>0,929-0,786-0,571-0,286</td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 2</td>
<td>#</td>
<td>0,929-0,714-0,500-0,286</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITGA1 FLEUVES ALPINS</td>
<td>Cas général</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITGA2 FLEUVES ALPINS</td>
<td>Cas général</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 ALPES INTERNES</td>
<td>Cas général</td>
<td>#</td>
<td>0,929-0,714-0,500-0,286</td>
<td>0,929-0,714-0,500-0,286</td>
<td></td>
</tr>
<tr>
<td>7 PRE-ALPES DU SUD</td>
<td>Cas général</td>
<td>#</td>
<td>1,000-0,786-0,571-0,286</td>
<td>1,000-0,786-0,571-0,286</td>
<td></td>
</tr>
<tr>
<td>Référence</td>
<td>Catégorie</td>
<td>Valeur</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>--------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 MEDITERRANEE</td>
<td>Exogène de l’HER 2 ou 7</td>
<td>1,000-0,800-0,533-0,333</td>
<td>Exogène de l’HER 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 8</td>
<td>0,933-0,800-0,533-0,333</td>
<td>Exogène de l’HER 1 #</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cas général</td>
<td>0,938-0,813-0,563-0,313</td>
<td>0,938-0,813-0,563-0,313</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 CEVENNES</td>
<td>Exogène des HER 7</td>
<td>1,000-0,800-0,533-0,333</td>
<td>Exogène de l’HER 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cas général</td>
<td>0,933-0,800-0,533-0,333</td>
<td>0,933-0,800-0,533-0,333</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A-her2 n°70</td>
<td>0,929-0,786-0,571-0,286</td>
<td>0,929-0,786-0,571-0,286</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 CORSE</td>
<td>A-her2 n°22</td>
<td>0,923-0,769-0,462-0,231</td>
<td>0,917-0,750-0,500-0,250</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B-her2 n°88</td>
<td>0,929-0,786-0,571-0,286</td>
<td>0,929-0,786-0,571-0,286</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 GRANDS CAUSES</td>
<td>Cas général</td>
<td>0,941-0,824-0,529-0,294</td>
<td>0,941-0,824-0,529-0,294</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 CAUSSES AQUITAINS</td>
<td>Exogène de l’HER 8</td>
<td>0,933-0,800-0,533-0,333</td>
<td>Exogène de l’HER 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cas général</td>
<td>0,933-0,800-0,533-0,333</td>
<td>0,933-0,800-0,533-0,333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 COTEAUX AQUITAINS</td>
<td>Exogène des HER 3, 8, 11 ou 19</td>
<td>0,941-0,824-0,529-0,294</td>
<td>0,941-0,824-0,529-0,294</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cas général</td>
<td>0,933-0,800-0,533-0,333</td>
<td>0,933-0,800-0,533-0,333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 LANDES</td>
<td>Exogène de l’HER 1 #</td>
<td>0,938-0,813-0,563-0,313</td>
<td>0,938-0,813-0,563-0,313</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 PYRENEES</td>
<td>Cas général</td>
<td>0,933-0,800-0,533-0,333</td>
<td>0,938-0,813-0,563-0,313</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 ARMORICAIN</td>
<td>A-Centre-Sud</td>
<td>0,933-0,800-0,533-0,333</td>
<td>0,933-0,800-0,533-0,333</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B-Ouest-Nord Est</td>
<td>0,938-0,813-0,563-0,313</td>
<td>0,938-0,813-0,563-0,313</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIGL LA LOIRE</td>
<td>Cas général</td>
<td>0,929-0,786-0,571-0,286</td>
<td>0,929-0,786-0,571-0,286</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 TABLES CALCAIRES</td>
<td>Exogène de l’HER 10 #</td>
<td>0,938-0,813-0,563-0,313</td>
<td>0,938-0,813-0,563-0,313</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 21 #</td>
<td>0,944-0,778-0,556-0,278</td>
<td>0,944-0,778-0,556-0,278</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 COTES CALCAIRES EST</td>
<td>Cas général</td>
<td>0,938-0,813-0,563-0,313</td>
<td>0,933-0,800-0,533-0,333</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 4 #</td>
<td>0,933-0,800-0,533-0,333</td>
<td>0,933-0,800-0,533-0,333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 VOSGES</td>
<td>Cas général</td>
<td>0,933-0,800-0,533-0,333</td>
<td>0,933-0,800-0,533-0,333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 ARDENNES</td>
<td>Exogène de l’HER 10 #</td>
<td>0,944-0,778-0,556-0,278</td>
<td>0,944-0,778-0,556-0,278</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 ALSACE</td>
<td>Cas général</td>
<td>0,933-0,800-0,533-0,333</td>
<td>0,933-0,800-0,533-0,333</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Lorsque plusieurs types d’une même HER sont concernés par une valeur de référence et des valeurs seuils de limites de classes identiques, alors ces types sont regroupés, par soucis de simplification, au sein d’une même cellule dans le présent tableau.

a-b-c-d : a = limite inférieure du très bon état, b = limite inférieure du bon état, c = limite inférieure de l’état moyen, d = limite inférieure de l’état médiocre.

Les valeurs des indices de ce tableau ont pris en compte la décision de la commission du 12 février 2018.

: absence de référence.

En gris : type inexistant

En gris clair : référence existante et indice calculable mais non utilisé pour l’évaluation.

Valeurs de références, par type de cours d’eau, pour l’indice équivalent phase (A+B) de l’HER 9 A-her2 n°57 et l’indice MGCE 12 prélèvements des cours d’eau profonds

<table>
<thead>
<tr>
<th>Catégories de taille de cours d’eau</th>
<th>Valeurs</th>
<th>Description</th>
</tr>
</thead>
</table>

58
<table>
<thead>
<tr>
<th>Hydroécorégions de niveau 1</th>
<th>Cas général, cours d'eau exogène de l'HER de niveau 1 indiquée ou HER de niveau 2</th>
<th>Très Grands</th>
<th>Grands</th>
<th>Moyens</th>
<th>Petits</th>
<th>Très Petits</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 DEPOTS ARGILLO SABLEUX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 MASSIF CENTRAL NORD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 MASSIF CENTRAL SUD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 DEPRESSIONS SEDIMENTAIRES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 PLAINE SAONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 JURA / PRE-ALPES DU NORD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTGA1 FLEUVES ALPINS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTGA2 ALPES INTERNES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 PRE-ALPES DU SUD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 MEDITERRANEE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 CEVENNES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 CORSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 GRANDS CAUSSES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 CAUSSES AQUITAINE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 COTEAUX AQUITAINE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 LANDES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 PYRENEES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 ARMORICAIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTGL LA LOIRE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 TABLES CALCAIRES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 COTES CALCAIRES EST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 VOSGES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 ARDENNES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 ALSACE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lorsque plusieurs types d’une même HER sont concernés par une valeur de référence et des valeurs seuils de limites de classes identiques, alors ces types sont regroupés, par soucis de simplification, au sein d’une même cellule dans le présent tableau.
* : absence de référence.
En grisé : type inexistant.

Indice pour la faune benthique invertébrée : indice invertébrés multimétrique cours d’eau profonds (I₂M₂ CEP – code Sandre 1500)

L’indice I₂M₂ CEP s’applique aux cours d’eau à partir de la taille moyenne et qui sont échantillonnés selon le protocole de prélèvements des macro-invertébrés aquatiques en rivières profondes et canaux (XP T90-337). L’I₂M₂ CEP s’applique également, pour ce cycle de gestion, en lieu et place de l’I₂M₂ pour les très grands cours d’eau échantillonnés selon le protocole de prélèvement des macro-invertébrés aquatiques en rivières peu profondes (NF T90-333) pour lesquels il n’existe pas de conditions de référence.

Valeurs inférieures des limites des classes d’état, exprimées en EQR, par type* de cours d’eau pour l’I₂M₂ CEP

<table>
<thead>
<tr>
<th>Hydroécorégions de niveau 1</th>
<th>Catégories de taille de cours d’eau</th>
<th>Très Grands</th>
<th>Grands</th>
<th>Moyens</th>
<th>Petits</th>
<th>Très Petits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cas général, cours d’eau exogène de l’HER de niveau 1 indiquée ou HER de niveau 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 DEPOTS ARGILO SABLEUX</td>
<td>Cas général</td>
<td>0,871-0,653-0,435-0,218</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 MASSIF CENTRAL NORD</td>
<td>Cas général</td>
<td>0,767-0,607-0,382-0,191</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 19 ou 8</td>
<td>0,871-0,653-0,435-0,218</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 MASSIF CENTRAL SUD</td>
<td>Cas général</td>
<td>0,871-0,653-0,435-0,218</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 19 ou 8</td>
<td>0,871-0,653-0,435-0,218</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 DEPRESSIONS SEDIMENTAIRES</td>
<td>Cas général</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 3 ou 21</td>
<td>0,767-0,607-0,382-0,191</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 PLAINE SAONE</td>
<td>Exogène de l’HER 3 ou 21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cas général</td>
<td>0,767-0,607-0,382-0,191</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 4</td>
<td>0,767-0,607-0,382-0,191</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 JURA / PRE-ALPES DU NORD</td>
<td>Cas général</td>
<td>0,767-0,607-0,382-0,191</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 2</td>
<td>0,767-0,607-0,382-0,191</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTGA1 FLEUVES ALPINS</td>
<td>Cas général</td>
<td>0,767-0,607-0,382-0,191</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTGA2 FLEUVES ALPINS</td>
<td>Cas général</td>
<td>0,767-0,607-0,382-0,191</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 ALPES INTERNES</td>
<td>Cas général</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 PRE-ALPES DU SUD</td>
<td>Cas général</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>MEDITERRANEE</td>
<td>Exogène de l’HER 2 ou 7</td>
<td>0.767-0.607-0.382-0.191</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exogène de l’HER 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exogène de l’HER 1 ou 8</td>
<td>0.871-0.653-0.435-0.218</td>
<td>0.767-0.607-0.382-0.191</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cas général</td>
<td>0.767-0.607-0.382-0.191</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>CEVENNES</td>
<td>Cas général</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-her2 n°70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>CORSE</td>
<td>A-her2 n°22</td>
<td>0.767-0.607-0.382-0.191</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-her2 n°88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>GRANDS CAUSSES</td>
<td>Cas général</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exogène de l’HER 8</td>
<td>0.871-0.653-0.435-0.218</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>CAUSSES AQUITAINS</td>
<td>Cas général</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exogène de l’HER 3 ou 21</td>
<td>0.871-0.653-0.435-0.218</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>COTEAUX AQUITAINS</td>
<td>Exogène des HER 3 ou 11</td>
<td>0.871-0.653-0.435-0.218</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cas général</td>
<td>0.871-0.653-0.435-0.218</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exogène de l’HER 1</td>
<td>0.871-0.653-0.435-0.218</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>LANDES</td>
<td>Cas général</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>ARMORICAIN</td>
<td>A-Centre-Sud</td>
<td>0.767-0.607-0.382-0.191</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-Ouest-Nord Est</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTGL</td>
<td>LA LOIRE</td>
<td>Cas général</td>
<td>0.767-0.607-0.382-0.191</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-her2 n°57</td>
<td>0.767-0.607-0.382-0.191</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>TABLES CALCAIRES</td>
<td>Cas général</td>
<td>0.767-0.607-0.382-0.191</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exogène de l’HER 10</td>
<td>0.871-0.653-0.435-0.218</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exogène de l’HER 21</td>
<td>0.871-0.653-0.435-0.218</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>COTES CALCAIRES EST</td>
<td>Exogène de l’HER 21</td>
<td>0.871-0.653-0.435-0.218</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cas général</td>
<td>0.767-0.607-0.382-0.191</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exogène de l’HER 4</td>
<td>0.767-0.607-0.382-0.191</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>VOSGES</td>
<td>Cas général</td>
<td>0.767-0.607-0.382-0.191</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>ARDENNES</td>
<td>Exogène de l’HER 10</td>
<td>0.767-0.607-0.382-0.191</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cas général</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>ALSACE</td>
<td>Cas général</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exogène de l’HER 4</td>
<td>0.767-0.607-0.382-0.191</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Lorsque plusieurs types d’une même HER sont concernés par une valeur de référence et des valeurs seuils de limites de classes identiques, alors ces types sont regroupés, par soucis de simplification, au sein d’une même cellule dans le présent tableau.

a-b-c-d : a = limite inférieure du très bon état, b = limite inférieure du bon état, c = limite inférieure de l’état moyen, d = limite inférieure de l’état médiocre

En gris foncé : type inexistant
Indice pour l’ichtyofaune : indice poisson de rivière
(code Sandre : 7036)

La transformation en EQR des valeurs de limites de classes pour l’IPR présentant des difficultés, il a été décidé de maintenir ces valeurs-seuils en note d’indice. Pour la classification de l’état biologique de l’élément de qualité ichthyofaune, la note d’indice calculée sur un prélèvement est à comparer directement aux valeurs inférieures des limites de classes figurant dans le tableau ci-après.

Valeurs inférieures des limites des classes d’état, exprimées par type de cours d’eau pour l’IPR

<table>
<thead>
<tr>
<th>Catégories de taille de cours d’eau</th>
<th>Très Grands</th>
<th>Grands</th>
<th>Moyens</th>
<th>Petits</th>
<th>Très Petits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydroécorégions de niveau 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 DEPOTS ARGOILO SABLEUX</td>
<td>Cas général</td>
<td>5-16*-25-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 9</td>
<td>5-16*-25-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 21</td>
<td>5-16*-25-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 MASSIF CENTRAL NORD</td>
<td>Cas général</td>
<td>5-16*-25-36</td>
<td></td>
<td></td>
<td>5-16*-25-36</td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 19</td>
<td>5-16*-25-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 8</td>
<td>5-16*-25-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 19 ou 8</td>
<td>5-16*-25-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 MASSIF CENTRAL SUID</td>
<td>Cas général</td>
<td>5-16*-25-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 9</td>
<td>5-16*-25-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 21</td>
<td>5-16*-25-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 DEPRESSIONS SEDIMENTAIRES</td>
<td>Cas général</td>
<td>5-16*-25-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 3 ou 21</td>
<td>5-16*-25-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 PLAINE SAONE</td>
<td>Cas général</td>
<td>5-16*-25-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 3 ou 21</td>
<td>5-16*-25-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 5</td>
<td>5-16*-25-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 4</td>
<td>5-16*-25-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 JURA / PRE-ALPES DU NORD</td>
<td>Cas général</td>
<td>5-16*-25-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITGA1 FLEUVES ALPINS</td>
<td>Cas général</td>
<td>5-16*-25-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITGA2 ALPES INTERNES</td>
<td>Cas général</td>
<td>5-16*-25-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 PRE-ALPES DU SUD</td>
<td>Cas général</td>
<td>5-16*-25-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 2</td>
<td>5-16*-25-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 2 ou 7</td>
<td>5-16*-25-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 7</td>
<td>5-16*-25-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 8</td>
<td>5-16*-25-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 1</td>
<td>5-16*-25-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 MEDITERRANEE</td>
<td>Cas général</td>
<td>5-16*-25-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 CEVENNES</td>
<td>Cas général</td>
<td>5-16*-25-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A-her2 n°70</td>
<td>5-16*-25-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A-her2 n°22</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B-her2 n°88</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 CORSE</td>
<td>Cas général</td>
<td>5-16*-25-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 GRANDS CAUSSES</td>
<td>Cas général</td>
<td>5-16*-25-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 8</td>
<td>5-16*-25-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 CAUSSES AQUITAINS</td>
<td>Cas général</td>
<td>5-16*-25-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 3 et/ou 21</td>
<td>5-16*-25-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 COTEAUX AQUITAINS</td>
<td>Cas général</td>
<td>5-16*-25-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène des HER 3, 8, 11 ou 19</td>
<td>5-16*-25-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène des HER 3 ou 8</td>
<td>5-16*-25-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exogène de l’HER 1</td>
<td>5-16*-25-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 LANDES</td>
<td>Cas général</td>
<td>5-16*-25-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 PYRENEES</td>
<td>Cas général</td>
<td>5-16*-25-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 ARMORICAIN</td>
<td>A-Centre-Sud</td>
<td>5-16*-25-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B-Ouest-Nord Est</td>
<td>5-16*-25-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTGL</td>
<td>LA LOIRE</td>
<td>Cas général</td>
<td>5-16-25-36</td>
<td>5-16*-25-36</td>
<td>5-16*-25-36</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------</td>
<td>-------------</td>
<td>------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>9</td>
<td>TABLES CALCAIRES</td>
<td>A-her2 n°57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cas général</td>
<td>5-16-25-36</td>
<td>5-16*-25-36</td>
<td>5-16*-25-36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exogène de l'HER 10</td>
<td>5-16-25-36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exogène de l'HER 21</td>
<td>5-16-25-36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>COTES CALCAIRES</td>
<td>Exogène de l'HER 21</td>
<td>5-16-25-36</td>
<td>5-16*-25-36</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>VOSGES</td>
<td>Cas général</td>
<td>5-16-25-36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>ARDENNES</td>
<td>Exogène de l'HER 10</td>
<td>5-16-25-36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>ALSACE</td>
<td>Cas général</td>
<td>5-16-25-36</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exogène de l'HER 4 5-16*-25-36

a, b, c, d : a = limite très bon état / bon état, b = limite bon état / état moyen, c = limite état moyen / état médiocre, d = limite état médiocre / état mauvais
Les limites de chaque classe sont prises en compte de la manière suivante :
- pour l'état très bon : [0 ; a (valeur de la limite incluse)] ;
- pour les états bon, moyen et médiocre : respectivement a, b, c (valeur de la limite exclue) ; respectivement b, c, d (valeur de la limite incluse) ;
- pour l'état mauvais : > d (valeur de la limite exclue).
Les valeurs de l'IPR figurant dans ce tableau ont pris en compte la décision de la commission du 12 février 2018 relative à l'inter-étonnage.
En grisé : type inexistant
En gris clair : Bien que potentiellement pertinents partout, le résultat de l'évaluation pourra être à valider à dire d'expert pour certaines stations de ces types au regard des limites d'application de l'indice consignées dans la notice IPR (CSP, avril 2006). Ces limites concernent notamment les stations de très grands cours d'eau ou celles situées en zones apiscicoles ou assimilables
#: l'IPR ne s'applique pas à la Corse.

16*: dans les cas où l'altitude du site d'évaluation est supérieure ou égale à 500 m, la valeur de 14,5 doit être utilisée au lieu de 16
Annexe 2 : État écologique des cours d’eau - Indices biologiques pour les Antilles (Guadeloupe/Martinique)

Indice pour le phytoplancton

Le suivi de l’élément de qualité phytoplancton est considéré comme pertinent uniquement pour les très grands cours d’eau. En l’absence de tels cours d’eau aux Antilles, aucun indice phytoplancton ne sera développé pour l’évaluation de l’état.

Indice pour les macrophytes

Pour les départements de la Guadeloupe et de la Martinique, aucun indice biologique macrophytes n’a été développé, considérant que cet élément de qualité biologique n’est pas pertinent dans ces départements.

Les résultats des observations menées sur un panel complet de sites représentatifs des réseaux de surveillance mis en place ou, plus généralement, de l’ensemble des types de cours d’eau de chacun de ces territoires, ont permis de confirmer plusieurs éléments :

- Dans les départements des Antilles, la topographie abrupte et la superficie généralement faible des bassins-versant, associée à des épisodes pluviaux souvent violents, génèrent des régimes hydrologiques très contrastés sur un cycle annuel, avec des périodes d’assèchement plus ou moins complet alternant avec des écoulements à très haute énergie provocant un remaniement important et fréquent des substrats. Ces caractéristiques sont très défavorables à l’implantation et au maintien de peuplements de macrophytes en équilibre avec les pressions de type anthropique.

- Le couvert forestier très dense, présent sur de grandes étendues de ces territoires, ne permet souvent qu’un éclairement très faible des petits cours d’eau qui forment la majeure partie du réseau hydrographique. Ceci limite l’implantation de peuplements macrophytiques à de rares formes, le plus souvent hélophytiques. Dans ces conditions naturelles limitantes, ces peuplements traduisent principalement ces conditions particulières, et non un gradient de réponse aux pressions anthropiques.

- De même, la nature géochimique des eaux, en relation avec l’origine volcanique des roches, génère des systèmes aquatiques naturellement oligotrophes à ultra-oligotrophes, pour la plupart des types de cours d’eau. La végétation y est donc naturellement pauvre. Localement, l’hydrogéochimie peut parfois, au contraire, être très spécifique, et apporter une minéralité excessive à l’eau (sources thermales à la Guadeloupe, par exemple). Les peuplements d’algues peuvent alors être abondants, mais ne représentent que ces conditions naturellement très particulières.

- La superficie assez faible de ces territoires et le contraste entre occupation du sol des zones centrales et de la bande littorale rendent difficiles l’obtention d’un gradient de pression associé à un nombre suffisant de sites de mesures, conditions nécessaires au développement d’un indicateur basé sur une approche statistique des relations entre pressions et impacts, comme le stipulent les critères de conformité méthodologique DCE.

- De plus, les gradients de pression anthropiques sont très resserrés, entre les zones amont et médianes des bassins, généralement pas ou très peu impactées (très forts reliefs), et les zones distales côtières, où l’impact est parfois très fort mais très localisé au tout dernier tronçon des cours d’eau. Cette configuration assez généralisée est défavorable à l’obtention d’un gradient de calage d’un indicateur biologique.

- Quelques secteurs subissent des pressions modérées (agriculture, habitat diffus) et montrent des peuplements macrophytiques susceptibles de supporter une approche de bioindication, comme sur la partie sud de la Martinique ou le nord-est de Basse-Terre en Guadeloupe, mais...
il s’agit très principalement de peuplements d’algues ou d’hélophytes rivulaires, difficiles à utiliser seuls en tant que bioindicateur macrophytes.

Indice pour le phytobenthos : indice diatomique antillais
(code Sandre 8053)

La note en EQR se calcule comme suit :

Note en EQR = (note observée) / (note de référence du type)

<table>
<thead>
<tr>
<th>Valeurs inférieures des limites de classe, exprimées en EQR, par type de cours d’eau pour l’IDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diatomées des cours d’eau des Antilles (EQR-IDA)</td>
</tr>
<tr>
<td>Bassin</td>
</tr>
<tr>
<td>Guadeloupe</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Martinique</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

*a-b-c-d : a = limite inférieure du très bon état, b = limite inférieure du bon état, c = limite inférieure de l’état moyen, d = limite inférieure de l’état médiocre
En grisé : type inexistant

(*) Sauf Lézarde de Martinique, cours d’eau issu de l’HER Pitons du Nord qui traverse ensuite rapidement la Plaine du Lamentin. Ce cours d’eau est à évaluer sur tout son cours sur la grille Pitons du Nord.

<table>
<thead>
<tr>
<th>Valeurs de référence par type de cours d’eau pour l’IDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diatomées des cours d’eau des Antilles (IDA)</td>
</tr>
<tr>
<td>Bassin</td>
</tr>
<tr>
<td>Guadeloupe</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Martinique</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

En grisé : type inexistant

(*) Sauf Lézarde de Martinique, cours d’eau issu de l’HER Pitons du Nord qui traverse ensuite rapidement la Plaine du Lamentin. Ce cours d’eau est à évaluer sur tout son cours sur la grille Pitons du Nord.
Indice pour la faune benthique invertébré : indice biologique macro-invertébrés Antilles (code Sandre 8040)

Valeurs inférieures des limites des classes d’état, exprimées en EQR, par type de cours d’eau pour l’IBMA

<table>
<thead>
<tr>
<th>Invertébrés des cours d’eau des Antilles (EQR-IBMA)</th>
<th>Catégories de taille de cours d’eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bassin</td>
<td>Hydro-écorégions</td>
</tr>
<tr>
<td></td>
<td>Cas général, cours d’eau exogènes de l’HER</td>
</tr>
<tr>
<td></td>
<td>Très grands</td>
</tr>
<tr>
<td>Guadeloupe</td>
<td></td>
</tr>
<tr>
<td>1 Basse-Terre plaine nord-est (plaine humide)</td>
<td>Cas général</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Basse-Terre volcans (volcan humide)</td>
<td>Cas général</td>
</tr>
<tr>
<td>Martinique</td>
<td></td>
</tr>
<tr>
<td>1 Pitons du Nord</td>
<td>Cas général</td>
</tr>
<tr>
<td></td>
<td>ME « Monsieur »</td>
</tr>
<tr>
<td>2 Mornes du Sud (collines)</td>
<td>Cas général</td>
</tr>
<tr>
<td></td>
<td>Aval de la ME « Rivière du Galion »</td>
</tr>
<tr>
<td>3 Plaine du Lamentin</td>
<td>Cas général</td>
</tr>
</tbody>
</table>

a-b-c-d : a = limite inférieure du très bon état, b = limite inférieure du bon état, c = limite inférieure de l’état moyen, d = limite inférieure de l’état médiocre. En grisé : type inexistant

Pour la Martinique :

Les stations de l’HER « Plaine du Lamentin » appartiennent au biotype M5 ; les valeurs-seuils de ce biotype sont donc à appliquer aux ME de cette HER.

Les stations de l’HER « Pitons du Nord » se répartissent entre les biotypes M4, M5 et M6. Les valeurs-seuils communes aux biotypes M4 et M5 sont à appliquer à la majorité des ME, à l’exception de la ME « Monsieur », mais pour laquelle par ailleurs, il n’y a pas de station RCS.

Pour la Guadeloupe :

Les stations de Guadeloupe des HER correspondent aux biotypes G1, G2 et G3, qui tous présentent les mêmes valeurs-seuils. Il n’est donc pas nécessaire de distinguer les masses d’eau pour l’évaluation. L’HER 2 « Iles sèches » ne présente pas de masses d’eau suivies au titre de l’EQB « invertébrés benthiques ».
Indice pour l’ichtyofaune

Annexe 3 : État écologique des cours d’eau - indices biologiques pour la Guyane

Indice pour le phytoplancton

En Guyane, le suivi de l’élément de qualité phytoplancton est considéré comme pertinent uniquement pour certains très grands cours d’eau. L’objectif est de développer un indice biologique pour le prochain cycle DCE. Dans l’attente d’un indicateur spécifique adapté à l’écologie de ces milieux, le préfet coordonnateur de bassin évalue l’état écologique des masses d’eau de surface, au regard des définitions normatives de l’annexe 1 de l’arrêté évaluation du 25 janvier 2010 modifié, en s’appuyant sur les connaissances actuelles, des indicateurs provisoires et le dire d’expert.

Indice pour les macrophytes

Pour le département de la Guyane aucun indice biologique macrophytes n’a été développé, considérant que cet élément de qualité biologique n’est pas pertinent dans ce département.

Les résultats des observations, menées sur un panel complet de sites représentatifs des réseaux de surveillance mis en place ou, plus généralement, de l’ensemble des types de cours d’eau de ce territoire, ont permis de confirmer plusieurs éléments :

- Le couvert forestier très dense, présent sur de grandes étendues de ces territoires, ne permet qu’un éclairement extrêmement faible des petits cours d’eau (les criques) qui forment la majeure partie du réseau hydrographique. Ceci limite l’implantation de peuplements macrophytiques à de rares formes, présentes uniquement lorsqu’une trouée naturelle ou artificielle (abords d’une piste ou d’un abattis) dans la canopée permet un éclairage suffisant du sol. Dans ces conditions naturelles limitantes, ces peuplements traduisent principalement ces conditions particulières, et non un gradient de réponse aux pressions anthropiques.

- Les peuplements de macrophytes des grands cours d’eau sont localisés à certaines zones de sauts, et très specialisés (composés en quasi exclusivité de Podostémacées, dont la taxinomie et l’écologie sont encore largement méconnues). Si, localement, il est probable que les peuplements en place soient indicateurs de conditions particulières, cette très faible diversité associée à une méconnaissance de la flore aquatique guyanaise ne permet pas d’envisager un indicateur à l’échelle de l’ensemble du territoire.

- La nature géochimique des eaux, en relation avec l’encaissant granitique (bouclier guyanais) génère des systèmes aquatiques extrêmement peu minéralisés, naturellement oligotrophes à ultra-oligotrophes pour la plupart des types de cours d’eau. La végétation macrophytique y est donc naturellement très pauvre, et même souvent totalement absente.

- La typologie très homogène de ce territoire et le fait que la très grande majorité du territoire guyanais n’est pas ou très peu impacté par les activités humaines rendent difficiles l’obtention d’un gradient de pression associé à un nombre suffisant de sites de mesures, conditions nécessaires au développement d’un indicateur basé sur une approche statistique des relations entre pressions et impacts, comme le stipulent les critères de conformité méthodologique DCE.

- Un très fort resserrement du gradient de pression anthropique s’observe, bien que le relief soit peu marqué, entre la couverture forestière et la bande côtière, dont les cours d’eau sont soumis aux marées et n’entrent donc pas dans les critères de pertinence macrophytes de cours d’eau. Cette configuration assez généralisée ne permet pas d’obtenir un gradient de calage d’un indicateur macrophytes.

- Quelques secteurs pourraient présenter des pressions modérées (agriculture, habitat diffus) et des peuplements macrophytiques supportant une approche de bioindication, comme sur
quelques courts tronçons de raccordement à la bande côtière guyanaise, mais il s’agit surtout de peuplements d’algues, difficiles à utiliser seuls en tant que bioindicateur macrophytes. Les zones où la pression est localement forte (tronçons soumis à des rejets domestiques non ou peu traités) ont montré des peuplements modestes, surtout composés d’algues, dont l’utilisation en bioindication macrophytes est a priori non pertinente.

Les caractéristiques régissant le fonctionnement et la typologie des cours d’eau de Guyane limitent fortement la faisabilité de mise au point d’un indicateur d’état écologique tels que ceux qui ont été développés en France hexagonale et en Corse à partir des peuplements macrophytiques. La pertinence de cet élément de qualité biologique dans ce territoire n’est donc pas assurée.

Indice pour le phytobenthos : indice diatomique de Guyane Française (IDGF, code Sandre : 1502)

Un guide sera prochainement disponible pour l’IDGF

Valeurs inférieures des limites des classes d’état par type de cours d’eau, directement exprimées en EQR-IDGF selon la forme a-b-c-d

<table>
<thead>
<tr>
<th>Hydroécorégions HER</th>
<th>Catégories de taille de cours d’eau</th>
<th>Diatomées des cours d’eau de Guyane EQR-IDGF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plaine littorale du Nord (51)</td>
<td>Très grands</td>
<td>Grands</td>
</tr>
<tr>
<td>Bouclier guyanais (52)</td>
<td>0,88 – 0,75 – 0,50 – 0,25</td>
<td></td>
</tr>
</tbody>
</table>

* a = limite inférieure du très bon état, b = limite inférieure du bon état, c = limite inférieure de l’état moyen, d = limite inférieure de l’état médiocre

(*) : les TGCE et GCE suivants, exogènes de l’HER 52 “Bouclier Guyanais” et traversant l’HER 51 “Plaine littorale du Nord” sans changer de typologie, doivent être évalués tout au long de leur cours selon la grille de l’HER 52 : Maroni, Mana (TGCE), Sinnamary (GCE).
Indice pour la faune benthique invertébrée : score moyen des éphéméroptères de Guyane (SMEG - Code SANDRE 1203).

(Guide méthodologique pour la mise en œuvre d’indices biologiques en outre-mer : score moyen des éphéméroptères).

Valeurs inférieures des limites des classes, exprimées en EQR, par type de cours d’eau pour le SMEG

<table>
<thead>
<tr>
<th>Invertébrés des cours d’eau de Guyane (EQR-SMEG)</th>
<th>Catégories de taille de cours d’eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroécorégions</td>
<td>Très grands</td>
</tr>
<tr>
<td>51 Plaine littorale</td>
<td></td>
</tr>
<tr>
<td>52 Bouclier guyanais</td>
<td></td>
</tr>
</tbody>
</table>

\(a\)-\(b\)-\(c\)-\(d\) : \(a\) = limite inférieure du très bon état, \(b\) = limite inférieure du bon état, \(c\) = limite inférieure de l’état moyen, \(d\) = limite inférieure de l’état médiocre

En grisé : absence de référence définie pour l’HER plaine littorale

Valeurs de référence par type de cours d’eau pour le SMEG

<table>
<thead>
<tr>
<th>Invertébrés des cours d’eau de Guyane (SMEG)</th>
<th>Catégories de taille de cours d’eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroécorégions</td>
<td>Très grands</td>
</tr>
<tr>
<td>51 Plaine littorale</td>
<td></td>
</tr>
<tr>
<td>52 Bouclier guyanais</td>
<td></td>
</tr>
</tbody>
</table>

En grisé : absence de référence définie pour l’HER Plaine littorale

Indice pour l’ichtyofaune : indice poissons Guyane global

(Guide méthodologique pour la mise en œuvre d’indices biologiques en outre-mer : l’indice poissons Guyane global (IPG-global))

Valeurs inférieures des limites des classes d’état, exprimées en EQR, par type de cours d’eau pour l’IPG Global

<table>
<thead>
<tr>
<th>Hydroécorégions</th>
<th>Très grands</th>
<th>Grands</th>
<th>Moyen</th>
<th>Petits</th>
<th>Très petits</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 Plaine littorale</td>
<td>0,98 – 0,74 – 0,49 – 0,24</td>
<td></td>
<td></td>
<td></td>
<td>Indice non applicable</td>
</tr>
<tr>
<td>S2 Bouclier guyanais</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a-b-c-d : a = limite inférieure du très bon état, b = limite inférieure du bon état, c = limite inférieure de l’état moyen, d = limite inférieure de l’état médiocre
Annexe 4 : État écologique des cours d’eau - Indices biologiques pour la Réunion

Indice pour le phytoplancton

Le suivi de l’élément de qualité phytoplancton est considéré comme pertinent uniquement pour les très grands cours d’eau. En l’absence d’une typologie de cours d’eau à la Réunion, aucun indice phytoplancton ne sera développé pour l’évaluation de l’état.

Indice pour les macrophytes

Pour le département de la Réunion aucun indice biologique macrophytes n’a été développé, considérant que cet élément de qualité biologique n’est pas pertinent dans ce département.

Les résultats des observations menées sur un panel complet de sites représentatifs des réseaux de surveillance mis en place ou, plus généralement, de l’ensemble des types de cours d’eau de chacun de ces territoires, ont permis de confirmer plusieurs éléments :
- Dans les RUP insulaires (Martinique, Guadeloupe, Réunion, Mayotte), la topographie abrupte et la superficie généralement faible des bassins-versant, associée à des épisodes pluviaux souvent violents, génèrent des régimes hydrologiques très contrastés sur un cycle annuel, avec des périodes de basses eaux ou d’assèchement plus ou moins complet alternant avec des écoulements à très haute énergie provocant un remaniement important et fréquent des substrats. Ces caractéristiques sont très défavorables à l’implantation et au maintien de peuplements de macrophytes en équilibre avec les pressions de type anthropique.
- La nature géochimique des eaux, en relation avec l’origine volcanique des roches, génère des systèmes aquatiques naturellement oligotrophes à ultra-oligotrophes, pour la plupart des cours d’eau. La végétation y est donc naturellement très peu diversifiée. Localement, l’hydrogéochimie peut parfois, au contraire, être très spécifique, et apporter une minéralité excessive à l’eau (sources thermales, par exemple). Les peuplements d’algues peuvent alors être abondants, mais ne représentent que ces conditions naturellement très particulières.
- Les gradients de pression anthropiques sont très resserrés, entre les zones amont et médianes des bassins, généralement peu ou très peu impactées (très forts reliefs), et les zones distales côtières, où l’impact est parfois très fort mais très localisé au tout dernier tronçon des cours d’eau. Cette configuration assez généralisée est défavorable à l’obtention d’un gradient de calage d’un indicateur biologique.
- Quelques secteurs subissent des pressions modérées (agriculture, habitat diffus) et montrent des peuplements macrophytiques susceptibles de supporter une approche de bioindication, mais il s’agit très principalement de peuplements d’algues ou d’hélophytes rivulaires, difficiles à utiliser seuls en tant que bioindicateur macrophytes.
- Les quelques peuplements abondants en cours d’eau sont observés sur des zones très limitées, dans de courts tronçons de raccordement à la mer, et sont le fait d’espèces invasives opportunistes et proliférantes (Cypéracées, Jacynthe d’eau, Laitue d’eau), donc peu indicatrices de pressions anthropiques chimiques ou morphologiques.

Les caractéristiques régissant le fonctionnement et la typologie des cours d’eau de la Réunion limitent fortement la faisabilité de mise au point d’un indicateur d’état écologique tels que ceux qui ont été développés en France hexagonale et en Corse à partir des peuplements macrophytiques. La pertinence de cet élément de qualité biologique dans ce territoire n’est donc pas assurée.
Indice pour le phytobenthos : indice diatomique Réunion (IDR)

(Guide méthodologique pour la mise en œuvre d’indices biologiques en outre-mer : l’indice diatomique Réunion (IDR))

La note en EQR se calcule comme suit :

Note en EQR = (note observée) / (note de référence du type)

Valeurs inférieures des limites des classes, exprimées en EQR, par type de cours d’eau pour l’IDR

<table>
<thead>
<tr>
<th>Diatomées des cours d’eau de la Réunion (EQR-IDR)</th>
<th>Catégories de taille de cours d’eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroécorégions</td>
<td>Très grands</td>
</tr>
<tr>
<td>Zone naturelle Ouest (de la Rivière des Pluies au Nord à la Rivière Langevin au Sud)</td>
<td></td>
</tr>
<tr>
<td>Zone naturelle Est (de la Rivière Sainte–Suzanne au Nord à la Rivière de l’Est au Sud)</td>
<td></td>
</tr>
</tbody>
</table>

Valeurs de référence par type de cours d’eau pour l’IDR

<table>
<thead>
<tr>
<th>Diatomées des cours d’eau de la Réunion (IDR)</th>
<th>Catégories de taille de cours d’eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroécorégions</td>
<td>Très grands</td>
</tr>
<tr>
<td>Zone naturelle Ouest (de la Rivière des Pluies au Nord à la Rivière Langevin au Sud)</td>
<td></td>
</tr>
<tr>
<td>Zone naturelle Est (de la Rivière Sainte–Suzanne au Nord à la Rivière de l’Est au Sud)</td>
<td></td>
</tr>
</tbody>
</table>

En grisé : type inexistant
Indice pour la faune benthique invertébrée : indice Réunion macro-invertébrés

(Guide méthodologique pour la mise en œuvre d’indices biologiques en outre-mer : l’indice Réunion macro-invertébrés)

La note en EQR se calcule comme suit :

\[
\text{Note en EQR} = \left(\frac{\text{note observée}}{\text{note de référence du type}} \right)
\]

Valeurs inférieures des limites des classes d’état, exprimées en EQR, par type de cours d’eau pour l’IRM

<table>
<thead>
<tr>
<th>Hydroécorégions</th>
<th>Catégories de taille de cours d’eau</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Très grands</td>
</tr>
<tr>
<td>Cirque Est au vent</td>
<td></td>
</tr>
<tr>
<td>Cirques Ouest et Sud sous le vent</td>
<td></td>
</tr>
<tr>
<td>Versants Est au vent</td>
<td>1 - 0,8 - 0,6 - 0,4</td>
</tr>
<tr>
<td>Versants Ouest sec</td>
<td></td>
</tr>
<tr>
<td>Formations volcaniques récentes</td>
<td>1 - 0,8 - 0,6 - 0,4</td>
</tr>
<tr>
<td>Versants Nord intermédiaires</td>
<td>1 - 0,8 - 0,6 - 0,4</td>
</tr>
</tbody>
</table>

\(a\)-\(b\)-\(c\)-d : \(a\) = limite inférieure du très bon état, \(b\) = limite inférieure du bon état, \(c\) = limite inférieure de l’état moyen, d = limite inférieure de l’état médiocre

: Absence de références

En grisé : type inexistant

Valeurs de référence par type de cours d’eau pour l’IRM

<table>
<thead>
<tr>
<th>Hydroécorégions</th>
<th>Catégories de taille de cours d’eau</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Très grands</td>
</tr>
<tr>
<td>Cirque Est au vent</td>
<td></td>
</tr>
<tr>
<td>Cirques Ouest et Sud sous le vent</td>
<td></td>
</tr>
<tr>
<td>Versants Est au vent</td>
<td>40</td>
</tr>
<tr>
<td>Versants Ouest sec</td>
<td></td>
</tr>
<tr>
<td>Formations volcaniques récentes</td>
<td>40</td>
</tr>
<tr>
<td>Versants Nord intermédiaires</td>
<td>40</td>
</tr>
</tbody>
</table>

En grisé : indicateur non applicable

: absence de référence.
Indice pour l’ichtyofaune : indice Réunion poissons

(Guide méthodologique pour la mise en œuvre d’indices biologiques en outre-mer : indice Réunion poissons (IRP))

La note en EQR se calcule comme suit :

\[
\text{Note en EQR} = \frac{\text{note observée}}{\text{note de référence du type}}
\]

Valeurs inférieures des limites des classes d’état, exprimées en EQR, par type de cours d’eau pour l’IRP

<table>
<thead>
<tr>
<th>Poissons des cours d’eau de la Réunion – EQR-IRP</th>
<th>Position de la station sur le cours d’eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Aval</td>
</tr>
<tr>
<td>Type I : Rivières de cirques ou pseudo-cirques</td>
<td>1 - >0,8 - 0,6 - 0,4</td>
</tr>
<tr>
<td>Type II : Rivières intermédiaires du Nord</td>
<td>1 - >0,8 - 0,6 - 0,4</td>
</tr>
</tbody>
</table>

\(a\)-\(b\)-\(c\)-\(d\) : a = limite inférieure du très bon état, b = limite inférieure du bon état, c = limite inférieure de l’état moyen, d = limite inférieure de l’état médiocre

: référence inexistante

Valeurs de référence par type de cours d’eau pour l’IRP

<table>
<thead>
<tr>
<th>Poissons des cours d’eau de la Réunion - IRP</th>
<th>Position de la station sur le cours d’eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Aval</td>
</tr>
<tr>
<td>Type I : Rivières de cirques ou pseudo-cirques</td>
<td>15</td>
</tr>
<tr>
<td>Type II : Rivières intermédiaires du Nord</td>
<td>15</td>
</tr>
</tbody>
</table>

: référence inexistante
Annexe 5 : État écologique des cours d’eau – indices biologiques pour Mayotte

Indice pour le phytoplancton

Le suivi de l’élément de qualité phytoplancton est considéré comme pertinent uniquement pour les très grands cours d’eau. En l’absence de tels cours d’eau à Mayotte, aucun indice phytoplancton ne sera développé pour l’évaluation de l’état.

Indice pour les macrophytes

Pour le département de Mayotte aucun indice biologique macrophytes n’a été développé, considérant que cet élément de qualité biologique n’est pas pertinent dans ce département.

Indice pour le phytobenthos : Indice Diatomées Mayotte espèce (IDMsp)

Valeurs inférieures des limites des classes d’état par type de cours d’eau, directement exprimées en EQR, pour l’IDMsp

<table>
<thead>
<tr>
<th>Diatomées des cours d’eau de Mayotte EQR-IDMsp</th>
<th>Catégories de taille de cours d’eau</th>
<th>Très grands</th>
<th>Grands</th>
<th>Moyens</th>
<th>Petits</th>
<th>Très petits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,956 – 0,851 – 0,704 – 0,481</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a-b-c-d : a = limite inférieure du très bon état, b = limite inférieure du bon état, c = limite inférieure de l’état moyen, d = limite inférieure de l’état médiocre.

Indice pour la faune benthique invertébrée : indicateur macroinvertébrés multimétrique pour les cours d’eau de Mayotte (I2M2-Mayotte)

Valeurs inférieures des limites des classes, exprimées en EQR, par type de cours d’eau pour l’I2M2 Mayotte

<table>
<thead>
<tr>
<th>Catégories de taille de cours d’eau</th>
<th>Très grands</th>
<th>Grands</th>
<th>Moyen</th>
<th>Petits</th>
<th>Très petits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≥ 0,722 – 0,542 – 0,361 – 0,181</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a-b-c-d : a = limite inférieure du très bon état, b = limite inférieure du bon état, c = limite inférieure de l’état moyen, d = limite inférieure de l’état médiocre. En grisé : absence de référence définie pour l’HER « plaine littorale ».
Annexe 6 : État écologique des cours d’eau - Paramètres physico-chimiques généraux

Les tableaux ci-dessous indiquent les valeurs des limites de classe pour les paramètres des éléments physico-chimiques généraux pour les cours d’eau. Les limites de chaque classe sont prises en compte de la manière suivante : valeur de la limite supérieure (exclue), valeur de la limite inférieure (incluse).

Pour tous les paramètres physico-chimiques généraux sauf l’oxygène dissous, le taux de saturation en O2 et les pH min/max, la classification s’établit en comparant aux valeurs des tableaux ci-dessous le percentile 90 obtenu à partir des données acquises.

Pour les paramètres « oxygène dissous » et « taux de saturation en O2 dissous » la classification s’établit en comparant aux valeurs des tableaux ci-dessous le percentile 10 obtenu à partir des données acquises.

Pour l’élément de qualité « acidification », la classification s’établit :
– en comparant le percentile 10 obtenu à partir des données acquises aux valeurs du pHmin ;
– en comparant le percentile 90 obtenu à partir des données acquises aux valeurs du pHmax.

La classe d’état de l’élément de qualité « acidification » est déterminée par la classe d’état la moins bonne de ces deux paramètres (pHmin ou pHmax).

Lorsque les concentrations mesurées pour un paramètre sont inférieures à sa limite de quantification, la valeur de la concentration à prendre en compte est celle de la limite de quantification de ce paramètre divisée par deux.

1) Table générale

Valeurs des limites des classes d’état pour les paramètres physico-chimiques généraux pour les cours d’eau

<table>
<thead>
<tr>
<th>Paramètres par élément de qualité (unités)</th>
<th>Code</th>
<th>Valeur de comparaison</th>
<th>Limites des classes d’état</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Très bon / Bon / Moyen / Médioce / Mauvais</td>
</tr>
<tr>
<td>Bilan de l’oxygène ¹</td>
<td>Bilan de l’oxygène ¹</td>
<td>Bilan de l’oxygène ¹</td>
<td>Bilan de l’oxygène ¹</td>
</tr>
<tr>
<td>Oxygène dissous (mg O₂/l)</td>
<td>1311</td>
<td>P10</td>
<td>8</td>
</tr>
<tr>
<td>Taux de saturation en O₂ dissous (%)</td>
<td>1312</td>
<td>P10</td>
<td>90</td>
</tr>
<tr>
<td>DBO₅ (mg O₂/l)</td>
<td>1313</td>
<td>P90</td>
<td>3</td>
</tr>
<tr>
<td>Carbonex organique dissous (mg C/l)</td>
<td>1841</td>
<td>P90</td>
<td>5</td>
</tr>
<tr>
<td>Température²</td>
<td>Température²</td>
<td>Température²</td>
<td>Température²</td>
</tr>
<tr>
<td>Eaux salmonicoles</td>
<td>1301</td>
<td>P90</td>
<td>20</td>
</tr>
<tr>
<td>Eaux cyprinicoles</td>
<td>24</td>
<td>25,5</td>
<td>27</td>
</tr>
<tr>
<td>Nutriments</td>
<td>Nutriments</td>
<td>Nutriments</td>
<td>Nutriments</td>
</tr>
<tr>
<td>P.O₄⁻ (mg P.O₄⁻/l)</td>
<td>1433</td>
<td>P90</td>
<td>0,1</td>
</tr>
<tr>
<td>Phosphore total (mg P/l)</td>
<td>1350</td>
<td>P90</td>
<td>0,05</td>
</tr>
<tr>
<td>NH₄⁺ (mg NH₄⁺/l)</td>
<td>1335</td>
<td>P90</td>
<td>0,1</td>
</tr>
<tr>
<td>NO₂⁻ (mg NO₂⁻/l)</td>
<td>1339</td>
<td>P90</td>
<td>0,1</td>
</tr>
<tr>
<td>NO₃⁻ (mg NO₃⁻/l)</td>
<td>1340</td>
<td>P90</td>
<td>10</td>
</tr>
<tr>
<td>Acidification¹</td>
<td>Acidification¹</td>
<td>Acidification¹</td>
<td>Acidification¹</td>
</tr>
<tr>
<td>pH minimum</td>
<td>1302</td>
<td>P10</td>
<td>6,5</td>
</tr>
<tr>
<td>pH maximum</td>
<td>1302</td>
<td>P90</td>
<td>8,2</td>
</tr>
<tr>
<td>Salinité</td>
<td>Salinité</td>
<td>Salinité</td>
<td>Salinité</td>
</tr>
<tr>
<td>Conductivité</td>
<td>1303 *</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Chlorures</td>
<td>1337 *</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Sulfates</td>
<td>1338 *</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

¹ acidification : en d’autres termes, à titre d’exemple, pour la classe bon état, le pH min est compris entre 6,0 et 6,5 ; le pH max entre 9,0 et 8,2.
Les limites inférieures du très bon état sont à considérer à titre indicatif.

2) Cas particuliers

Les tableaux ci-dessous indiquent les adaptations à apporter dans certains cas particuliers par rapport à la table générale.

Cours d’eau naturellement pauvres en oxygène

<table>
<thead>
<tr>
<th>PARAMETRES</th>
<th>LIMITES SUPERIEURE ET INFERIEURE DU BON ETAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilan de l’oxygène</td>
<td></td>
</tr>
<tr>
<td>Oxygène dissous (mg O$_2$.l$^{-1}$)</td>
<td>[7,5 – 6]</td>
</tr>
<tr>
<td>Taux de saturation en O$_2$ dissous (%)</td>
<td>[80 – 65]</td>
</tr>
</tbody>
</table>

Cours d’eau naturellement riches en matières organiques et cours d’eau des zones de tourbières

Non prise en compte du paramètre carbone organique dissous.

Cours d’eau naturellement froids (température de l’eau inférieure à 14 °C) et peu alcalins (pH max inférieur à 8,5 unité pH) moins sensibles aux teneurs en NH$_4$ + : (HER 2 Alpes internes ; cours d’eau très petits à moyens).

<table>
<thead>
<tr>
<th>PARAMETRES</th>
<th>LIMITES SUPERIEURE ET INFERIEURE DU BON ETAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutriments</td>
<td></td>
</tr>
<tr>
<td>NH$_4$ + (mg NH$_4$ + .l$^{-1}$)</td>
<td>[0,1 – 1]</td>
</tr>
</tbody>
</table>

Cours d’eau naturellement acides

<table>
<thead>
<tr>
<th>PARAMETRES</th>
<th>LIMITES SUPERIEURE ET INFERIEURE DU BON ETAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACIDIFICATION</td>
<td></td>
</tr>
<tr>
<td>pH minimum</td>
<td>[6 – 5,8]</td>
</tr>
<tr>
<td>pH maximal</td>
<td>[8,2 – 9]</td>
</tr>
</tbody>
</table>

Cours d’eau naturellement alcalins

<table>
<thead>
<tr>
<th>PARAMETRES</th>
<th>INTERVALLE CORRESPONDANT A LA CLASSE D’ETAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH maximum</td>
<td>Très bon [≤8,7] [8,7 ;9,5] [9,5 ;10] [10 ;10,5] >10,5</td>
</tr>
</tbody>
</table>

Cours d’eau de température naturellement élevée (HER 6 : Méditerranée ainsi que l’ensemble des cours d’eau des RUP)

Non prise en compte du paramètre température car les températures (estivales pour l’HER 6) sont naturellement élevées du fait des influences climatiques.
L’ensemble des valeurs-seuils mentionnées ci-dessus correspond à ce qu’il est possible de déterminer aujourd’hui compte-tenu des connaissances disponibles. Ces valeurs seront ultérieurement adaptées, notamment par type ou groupe de types de cours d’eau, conformément aux exigences de la DCE. Pour mémoire, les limites des classes très bon/bon et bon/moyen sont celles mentionnées dans le tableau 5 de la circulaire DCE 2005/12 relative au bon état. Les limites des classes inférieures sont issues du SEQ eau V1.
Annexe 7 : État écologique des cours d’eau - Evaluation hydromorphologique des cours d’eau pour la France hexagonale, la Corse, et les départements et régions d’outre-mer (DROM)

Dans l’attente de la détermination d’indicateurs et de valeurs seuils pertinents pour les éléments de qualité hydromorphologique, les informations disponibles sur les pressions hydromorphologiques sont à considérer pour la définition du très bon état écologique. Cette évaluation est réalisée à l’aide des outils :

- PRHYMO, outil d’aide à la décision, permettant d’évaluer à l’échelle de la masse d’eau, les gradients de pressions hydromorphologiques et les risques d’altération hydromorphologique qui en découlent. Cette architecture repose sur le croisement de grands jeux de données nationaux, collectés à grande échelle ;
- Les résultats et indicateurs issus de CARHYCE, en complément de PRHYMO et en tant qu’outils d’aide au diagnostic lorsque disponibles et pertinents. Ces informations complémentaires à PRHYMO peuvent permettre pour chaque station DCE prospectée, de corroborer ou non les analyses de risques d’altération fournies par PRHYMO à partir, cette fois, de données d’observation collectées au plus près du terrain ; et de disposer ainsi d’une information complémentaire pour l’analyse des pressions hydromorphologiques et de leurs effets, en quantifiant et en évaluant les altérations morphologiques du cours d’eau (géométrie hydraulique, structure et substrats du lit, structure des rives et des corridors rivulaires végétalisés).

Des cas d’étude et des éléments d’interprétation et d’analyse des résultats et indicateurs issus de CARHYCE sont présentés ci-après afin d’aider les utilisateurs dans l’utilisation de CARHYCE en tant qu’outil diagnostic en complément de PRHYMO.

Dispositif de Caractérisation hydromorphologique des cours d’eau hexagonaux et ultramarins (CARHYCE)

I. Présentation de l’Interface d’Exploitation des Données CARHYCE (IED CARHYCE)

Le dispositif CARHYCE couvre l’élément de qualité (EQ) DCE « Morphologie de la rivière », et les paramètres élémentaires [Morphologie] (1) Géométrie hydraulique, (2) Structure et substrat des lits, (3) Structure des rives (i.e. berges et végétalisation du corridor rivulaire) à l’échelle de la station. Il s’intéresse à la surveillance et à l’évaluation régulières de l’état hydromorphologique des cours d’eau ainsi qu’à certains projets d’aménagement ou de restauration de cours d’eau nécessitant un diagnostic fonctionnel.

Fruit de la coopération OFB – CNRS, l’Interface d’Exploitation des Données CARHYCE (IED CARHYCE) est l’application web de référence accessible à tous (https://analytics.humunum.fr/ied_carhyce/) valorisant les données recueillies dans le cadre de la mise en œuvre sur le terrain du protocole éponyme (Baudoin et al., 201728). Mise à jour deux fois par an, l’interface fournit un ensemble de métriques, indices, indicateurs et/ou représentations graphiques permettant le diagnostic du fonctionnement et l’évaluation de l’état hydromorphologique des stations caractérisées avec le protocole de terrain CARHYCE, en France hexagonale comme en Outre-mer. L’acquisition et la mise en qualité des données brutes se fait dans l’application web éponyme, dite de production : https://carhyce.eaufrance.fr/ ; dont l’accès est permis après une formation.

méthodologique obligatoire de 3 jours, celle-ci constituant alors le premier niveau de qualification des données.

IED CARHYCE s’enrichit chaque année de nouvelles propositions opérationnelles (algorithmes, graphiques, indicateurs, etc.): la prochaine, prévue pour 2024, est la fourniture d’un indicateur multiparamétrique de l’état hydromorphologique général de la station. Fin 2023, plus de 50 propositions de métriques, indices, indicateurs et/ou représentations graphiques couvrant plus de 2400 stations de France Hexagonale et d’Outre-mer figurent sous IED CARHYCE.

Sont présentés ci-après quelques exemples de résultats disponibles sous IED CARHYCE, l’intégralité des résultats est à consulter directement dans l’application. Par ailleurs, les productions autour du dispositif CARHYCE dans son ensemble sont consultables sur le portail technique de l’OFB: https://professionnels.ofb.fr/fr/node/386

II. GENERALITES RELATIVES A L’EVALUATION HYDROMORPHOLOGIQUE VIA LE DISPOSITIF CARHYCE

a. L’évaluation des caractéristiques de géométrie hydraulique du chenal

A partir des données relevées en application du protocole de terrain CARHYCE, IED fournit tout d’abord des jeux d’indicateurs relatifs à la géométrie hydraulique des chenaux permettant de comparer (Figure 1, en haut) les caractéristiques à pleins bords (largeur, profondeur, surface du lit mouillé, etc.) d’une station S: (1) à un modèle de référence, c’est-à-dire une représentation régionalisée ou typologique, selon le(s) cas, de la géométrie des lits peu ou non impactés par les activités humaines pour une taille de bassin donnée, (2) aux autres stations proches, (3) aux caractéristiques géométriques de cette même station entre plusieurs périodes et/ou opérations de collecte de données. L’ensemble des modèles de références de géométrie hydraulique permet d’aboutir au calcul de l’Indicateur morphologique global ou IMG. L’IMG est issu du regroupement (somme des résidus standardisés en valeurs absolues) des 6 modèles d’évaluation de la géométrie hydraulique des chenaux cités précédemment (Figure 1, en bas). IED CARHYCE fournit la valeur des résidus standardisés permettant de savoir si le résultat est supérieur (valeur positive) ou inférieur (valeur négative) aux références régionales. L’application fournit également une discrétisation en 5 classes de l’IMG (Gob et al., 2021).

Figure 1 : A gauche, approche conceptuelle comparative de la géométrie d’une station évaluée, supposée altérée, aux références régionales, à taille de bassin versant donnée (adapté de Tamisier et al., 2017); à

droite, Indicateur morphologique global ou IMG, diagramme radar, valeur correspondante et résidus de chaque modèle (source : IED CARHYCE, OFB – CNRS)

IED CARHYCE fournit différentes représentations graphiques en 2D ou 3D de la géométrie des lits, permettant de visualiser et d’apprécier l’hétérogénéité des formes de lits et des alternances ou successions de faciès hydrauliques (Figure 2).

Figure 2: Exemple de représentations de profils en long (en haut) et en 3D (en bas) pour la station de l’Huveaune à Auriol obtenus à partir d’une opération réalisée le 23 juillet 2020 (source : IED CARHYCE, OFB – CNRS)

b. L’évaluation des caractéristiques du substrat du chenal

IED CARHYCE fournit de la même manière différents indicateurs et représentations graphiques concernant le substrat du chenal. Ils servent notamment à caractériser la taille et la distribution des sédiments (Figure 3).

Figure 3: Représentations de courbes (à gauche) et d’un diagramme (à droite) de distribution granulométrique pour la station de l’Ouvèze à Rompon par comparaison de plusieurs opérations réalisées entre 2009 et 2021. Figurent également les calculs de déciles informatifs de la dispersion entre fractions fines et grossières (source : IED CARHYCE, OFB – CNRS). Il est à noter que la représentation de gauche repose sur les granulométries réalisées sur un des radiers de la station alors que la représentation de droite repose sur l’évaluation visuelle de la taille des particules effectuée à chaque point de mesure de la hauteur à pleins bords, et est representative à ce titre de l’ensemble de la station. L’exemple est repris de manière plus détaillée par la suite
c. L’évaluation des caractéristiques de végétation des berges du chenal

IED CARHYCE fournit enfin de la même manière différents indicateurs et représentations graphiques concernant la végétation des berges. Ils servent à caractériser la quantité et la qualité de la végétation environnante (Figure 4).

![Figure 4 : Représentation radar du Score Ripisylve (en haut) et cartographie 2D des strates de végétation (en bas) toujours pour la station de l’Ouvèze à Rompon (source : IED CARHYCE, OFB – CNRS). L’exemple est repris de manière plus détaillée par la suite.](image)

III. ÉTUDE DE CAS : EXEMPLES D’EXPLOITATION PROPRES AU DISPOSITIF CARHYCE ET AUX RESULTATS DISPONIBLES SOUS IED CARHYCE

Exemple n°1 : Analyse comparative d’une station à son modèle de référence régional

L’exemple 1 porte sur la comparaison de la géométrie des lits des stations aux modèles de références régionaux relatif à l’hydroécorégion (HER) « Tables calcaires », géométrie relevée au travers de multiples opérations de terrain, elles-mêmes datées. Il existe 6 modèles distincts dont la variable test est rapportée à la surface du bassin versant : largeur à pleins bords, profondeur à pleins bords, rapport largeur/profondeur à pleins bords, pente, profondeur des mouilles, section mouillée. Sur la Figure 5, les points bleus sont ceux qui ont servis à la construction du modèle de référence (droite de régression). Le point entouré de vert montre une opération réalisée sur une station dont tout porte à croire que la largeur à pleins bords est conforme aux références régionales. L’excellente significativité du modèle ne doit toutefois pas faire oublier la dispersion de part et d’autre du modèle, illustrative de la variabilité intra-régionale dans une HER par ailleurs très grande, s’étendant de la région parisienne à la région aquitaine.
Figure 5 : Modèle de largeur à pleins bords rapportée à la surface du bassin versant (source : IED CARHYCE, OFB – CNRS)

Exemple n°2 : Exploitation d’un modèle de référence combiné lors d’une comparaison entre stations

L’exemple 2 porte sur la Givonne, une petite rivière des Ardennes proche de la frontière belge couverte par le dispositif CARHYCE en deux secteurs distincts, l’un a priori forestier et peu impacté par les activités humaines (Figure 6, station n°1), et l’autre en traversée de ville, en secteur urbanisé (Figure 6, station n°2).

Figure 6 : Stations suivies par le dispositif CARHYCE sur la Givonne (source : IED CARHYCE, OFB – CNRS ; www.openstreetmap.fr)
La faible représentativité des modèles de références régionaux relatifs à l’HER « Ardennes » (peu de stations de référence disponibles) ne permet pas d’avoir un résultat fiable ; cela implique donc l’utilisation de modèles combinant une ou des HER de caractéristiques hydrogéomorphologiques proches tels que disponibles sous IED CARHYCE (Figure 7). Dans cet exemple, les données de l’HER « Ardennes » et de l’HER « Côtes calcaire est » (reliefs peu marqués et climats océaniques tempérés équivalents) sont associées dans des modèles dits de « Collinéen est »), permettant de réduire la dispersion (zone bleue) et de gagner en robustesse comme en fiabilité sur le résultat (Figure 7, à gauche).

Figure 7: Modèles de largeur à pleins bords rapportée à la surface du bassin versant, combiné dit de « Collinéen est » à gauche, HER « Ardennes » seule à droite (source : IED CARHYCE, OFB – CNRS)

Si l’on prend le modèle relatif aux profondeurs du chenal (et les représentations en 3D de chaque station, Figure 8), on constate alors une tendance marquée par de faibles profondeurs d’eau et un lit évasé pour la station n°1 située en secteur forestier tandis que la station en traversée de ville est assez logiquement contrainte latéralement, et marquée par des profondeurs plus importantes du fait notamment du réhaussement des berges visant à la protection des habitations.

Figure 8 : Diagrammes des stations prospectées sur la Givonne, la station n°1 à gauche est en secteur forestier tandis que la station n°2 à droite se situe en traversée urbaine et subit à ce titre diverses contraintes (source : IED CARHYCE, OFB – CNRS)

Exemple n°3 : Projection d’un modèle de référence régional vers un modèle typologique plus adéquat, lorsque disponible

L’exemple 3 porte sur l’Arly, une petite rivière affluent de l’Isère dont l’une des stations de suivi se situe sur la commune de Césarches. La rivière s’inscrit dans ce secteur dans une bande de tressage
typique de rivières alpines, dont l’espace disponible a sensiblement diminué lors de la création de l’autoroute adjacente, si l’on en juge les limites de la bande active historique de 1948 (Figure 9, à gauche) sans toutefois en altérer le fonctionnement d’origine. En 2019 (Figure 9, à droite), malgré la végétalisation d’une partie de la bande active, le lit reste large et marqué de multiples chenaux mobiles tandis que la diversité de forme est importante, alternant secteurs profonds et moins profonds ainsi que des anses végétalisées. Ce type de fonctionnement assez spécifique n’est pas bien évalué par les modèles d’échelle « HER » (ici « Pré-Alpes du Nord ») auxquels appartient la station, car plus adaptés à des rivières méandriformes à chenal unique : il convient donc de regarder les résultats à partir des modèles typologiques dits « de rivières en tresses », disponibles sous IED CARHYCE, lesquels mettent ici en évidence un fonctionnement de l’Arly plus proche des références connues dans le cas des rivières en tresses donc, et de la situation réellement observée sur le terrain (Figure 10).

Figure 9 : Situation de l’Arly à Césarches en 1948 (à gauche) et en 2019 (à droite) (source : www.geoportail.gouv.fr)

Figure 10 : Résultats de l’opération CARHYCE menée sur l’Arly à Césarches en 2019, projetés sur le modèle de largeur à pleins bords rapportée à la surface du bassin versant pour le cas type de rivières en tresses (source : IED CARHYCE, OFB – CNRS ; www.geoportail.gouv.fr)
Exemple n°4 : Evaluation des caractéristiques de géométrie hydraulique à partir de l’Indicateur morphologique global (IMG)

L’exemple 4 porte sur la Cère, une rivière du Massif central affluent de la Dordogne dont une station de suivi se situent sur la commune de Comblat le Pont. L’IMG révèle immédiatement un certain degré d’altération (Figure 11 ; valeur comprise entre 7,5 et 9 soit un écart fort aux valeurs des références régionales) et pointe particulièrement l’altération de la profondeur des mouilles. En regardant la situation et les caractéristiques du profil en long (Figure 12), nous remarquons la présence d’un seuil directement dans le périmètre de la station suivie, lequel apparait dès 1947 : l’augmentation de la profondeur des mouilles, bien visible à partir de l’IMG, est révélatrice de l’impact de l’aménagement (le diagramme radar pointe l’écart au modèle de référence « profondeur des mouilles » correspondant, et la valeur des résidus est positive).

Figure 11 : Indicateur morphologique global (IMG, diagramme radar, valeur correspondante et résidus de chaque modèle) pour la station de la Cère à Comblat le Pont, obtenu à partir d’une opération réalisée le 31 mai 2017 (source : IED CARHYCE, OFB – CNRS)

Figure 12 : En haut, situation (à gauche, actuelle ; à droite, en 1947) (source : www.google.com/streetview ; www.geoportail.gouv.fr) et profil en long (en bas) de la Cère à Comblat le Pont (source : IED CARHYCE, OFB – CNRS)

Exemple n°5 : Evaluation des caractéristiques de substrat dans le cas d’une restauration de rivière

L’exemple 5 porte sur l’Ouvèze, une rivière affluent en rive droite du Rhône dont plusieurs stations de suivi se situent sur la commune de Rompon, ce secteur ayant fait l’objet d’une restauration hydromorphologique en 2011. Quelques éléments sur le périmètre de cette restauration :

88
Diagnostic pré-travaux : Incision de 1,5 mètres en moyenne (maximum 4 mètres) suite à des extractions importantes depuis les années 1950 (400 000 m³ de matériaux extraits) et à la végétalisation des versants avec pour effet la disparition de la charge caillouteuse (lit rocheux), le déchaussement d’ouvrages d’art et la déstabilisation des berges, la perte d’habitats et de fonctionnalités écologiques

Objectif de restauration : Restauration du plancher alluvial et de la qualité écologique globale de la station

Réalisation effective : 30 000 m³ de galets et de graviers réinjectés sur un linéaire de 900 mètres (prélèvement local), et construction de 4 radiers de calage

Mal trié en 2009 avec près de 20% de particules fines et autant de particules très grossières, le système évolue après restauration vers plus d’équilibre et de conformité aux attendus, étant marqué par la quasi disparition des fines, la prédominance des substrats grossiers ainsi que par la présence de quelques blocs. Cette évolution est visible sous IED CARHYCE par le calcul des D16, D50 et D84 et la forme des courbes de cumul granulométriques, une courbe droite étant évocatrice d’un système équilibré et mieux trié (Figure 13). Elle l’est également par le résultat de l’indice de Folk & Ward dont la valeur passe de 1,586 en 2009 (éléments mal triés selon l’échelle de Bunte et Abt) à 0,63 en 2021 (modérément bien trié selon cette même échelle). L’indice de Fredle évolue lui respectivement de 24,468 en 2009 à 38,57 en 2021 : cet indice est d’autant plus élevé que la porosité et donc l’oxygénation du substrat (taille vs hétérogénéité/asymétrie de la distribution des particules) est importante.

Exemple n°6 : Evaluation des caractéristiques de végétation

Dans cet exemple, nous restons sur le cas précédent de l’Ouvèze à Rompon et observons l’évolution des caractéristiques de végétation à partir du Score Ripisylve (SR) et d’une cartographie en 2D des végétations issus d’IED CARHYCE (Figures 14 et 15). Après une période post-travaux marquée logiquement et immédiatement en 2012 par une diminution de la qualité et de la quantité de la végétation du fait des travaux réalisés, nous observons par la suite une reprise de végétation de plus en plus importante (augmentation du Score Ripisylve - SR, Figure 14) marquée notamment par l’abondance et l’épaisseur des strates arborées (Figure 15).
Figure 14 : Evolution de la végétation dans le cadre de la restauration de l’Ouvèze à Rompon : situation à gauche (source : earth.google.com) et résultats du Score Ripisylve (SR, diagrammes radar et valeurs correspondantes) à droite (source : IED CARHYCE, OFB – CNRS)

Figure 15 : Evolution des caractéristiques de végétation dans le cadre de la restauration de l’Ouvèze à Rompon (source : IED CARHYCE, OFB – CNRS)

Exemple n°7 : Analyse comparative à large échelle entre les dispositifs PRHYMO et CARHYCE, aide à l’évaluation de l’état hydromorphologique d’une masse d’eau (modifié d’après Tamisier et al., 2017)

Au préalable, il est important de rappeler que les données CARHYCE sont collectées à l’échelle de la station qu’elles caractérisent. Pour une utilisation « DCE compatible », il faut rappeler la logique de conception des réseaux DCE : ils sont constitués de stations de mesures représentatives du fonctionnement global de la masse d’eau, avec pour vocation d’être pérennes et stables. La représentativité globale du résultat n’implique donc pas la transposition du diagnostic issu de CARHYCE en tout point du réseau hydrographique mais renvoie plus succinctement à une image de l’état général de la masse d’eau comme le prévoit la DCE, sous réserve que la ou les stations de suivis soient correctement définies et positionnées.

Pour travailler en plusieurs secteurs d’une même masse d’eau, un dispositif tel que PRHYMO, orienté vers les liens « pressions à l’échelle du bassin versant vs risques d’altérations à l’échelle d’un tronçon hydrographique », est privilégié. Les résultats du dispositif CARHYCE sont alors complémentaires afin notamment de corroborer ou non les analyses de risques de PRHYMO par des données d’observation et de diagnostic plus locales, objectives et standardisées, desquelles découlent différents indicateurs de fonctionnement du système. En effet, alors que PRHYMO apporte
des informations sur des altérations potentielles à partir d’un catalogue de pressions anthropiques construit à l’échelle des bassins versants, les données sur lesquelles reposent le dispositif CARHYCE apportent une vérité de terrain basée sur l’observation très complémentaire de l’approche du dispositif PRHYMO. Cette complémentarité fait que ces dispositifs n’ont pas vocation à s’opposer : les évaluations qu’ils produisent sont faites sur des échelles spatiales et temporelles différentes. Les résultats et indicateurs issus du dispositif CARHYCE évaluent des altérations à l’échelle stationnelle à partir d’observations recueillies à un instant t, tandis que les résultats issus du dispositif PRHYMO permettent d’évaluer les gradients de pressions anthropiques et les risques d’altérations qui leur sont liés par des probabilités, traduites à l’échelle du bassin versant, à partir de données extraites automatiquement de sources variées sur le pas des 3 à 5 dernières années en moyenne. C’est l’ensemble de ces dispositifs, associé aux démarches de consultation, d’analyse et d’expertise de terrain, qui permet d’objectiver et d’apprécier la qualité hydromorphologique générale de la masse d’eau, pouvant expliquer un risque de non-atteinte des objectifs environnementaux et permettre alors de préconiser des mesures de restauration ou de réhabilitation appropriées.

Figure 16 : Carte de localisation des stations couvertes par le dispositif CARHYCE pour les bassins de la Touques, de la Risle et de l’Iton (source : Tamisier et al., 2017 ; Corine Land Cover)

Dans cet exemple, plusieurs bassins versants contigus sont considérés pour illustrer la façon dont peuvent être utilisés les résultats du dispositif CARHYCE pour évaluer l’état hydromorphologique globale d’une masse d’eau, en complément du dispositif PRHYMO. Nous avons choisi ici de considérer les bassins de la Touques, de la Risle et de l’Iton situés en Normandie et dans l’HER « Tables calcaires » (Figure 16). Les trois bassins considérés comportent dans notre exemple 27 stations dont 5 ont été utilisées dans la construction des modèles de références régionaux disponibles dans le dispositif CARHYCE. Les autres n’ont pas été qualifiées. Bien que la zone d’étude soit presque exclusivement rurale, on distingue sur la Figure 16 un gradient ouest-est d’occupation du sol. La prairie (bocage) domine à l’ouest puis est progressivement remplacée par de la culture intensive qui domine dans le bassin de l’Iton. Les Figures 17 et 18 présentent la mise en parallèle des résultats tirés de PRHYMO (ici données ex SYRAH-CE 201231) et CARHYCE pour, d’une part, les géométries des lits (IMG pour CARHYCE et « Variation des profondeurs et des largeurs » pour PRHYMO) et pour, d’autre part, la nature des berges (« Score Ripisylve » pour CARHYCE et « Structure de la rive » pour PRHYMO). Dans un souci de lisibilité, seules 10 stations CARHYCE ont été représentées.

On remarque tout d’abord une assez bonne corrélation entre les altérations potentielles signalées par PRHYMO et les résultats tirés de la mise en œuvre du protocole de terrain CARHYCE. Tant pour la géométrie que pour la ripisylve apparait une distinction assez claire entre les stations de la Touques et celles de l’Iton (la Risle se trouvant dans une position intermédiaire). Les cartes issues de PRHYMO montrent en effet un potentiel d’altération sur les profondeurs et les largeurs des lits plutôt

31 Pour rappel, PRHYMO est un dispositif, en cours de construction et rendu disponible pour début 2024, refondant dans une même architecture les ex-dispositifs SYRAH-CE, Système relationnel d’audit de l’hydromorphologie des cours d’eau (Hexagone), et RHUM, Référentiel hydromorphologique ultramarin (Outre-mer). Pour ce paragraphe et par simplification, nous ne parlerons donc que de PRHYMO au titre de l’ensemble des dispositifs et des périodes.
faille sur la quasi-totalité du bassin de la Touques et les têtes de bassin de la Risle. Cette tendance est confirmée par les valeurs de l’IMG indiquant que, sur les stations qui ont fait l’objet d’un relevé via le protocole de terrain CARHYCE, la géométrie des lits est très proche des modèles de références de l’HER « Tables Calcaires ». La vallée de l’Iton et les moyenne et basses vallées de la Risle sont beaucoup moins épargnées et présentent des valeurs d’IMG révélatrices d’écart aux modèles de références beaucoup plus marqués ; ce qui est en parfaite adéquation avec les évaluations de PRHYMO qui suggèrent des altérations fortes à très fortes sur les largeurs et les profondeurs. Les caractéristiques de la ripisylve suivent à peu de choses près la même distribution spatiale avec une ripisylve mieux développée dans les régions de bocages que dans les fonds de vallées occupés par l’agriculture intensive. La complémentarité PRHYMO – CARHYCE permet ici de visualiser les gradients de pressions (PRHYMO) s’exprimant par des altérations observées (CARHYCE) au sein des cours d’eau ciblés par notre exemple.

Figure 17 : Indicateurs morphologiques globaux (IMG) issus du dispositif CARHYCE pour plusieurs stations de la région étudiée et altérations probables des variations de largeur et de profondeur issues des résultats du dispositif PRHYMO, ex-SYRAH-CE (source : Tamisier et al., 2017 ; Corine Land Cover)

Figure 18 : « Scores Ripisylve » issus du dispositif CARHYCE pour plusieurs stations de la région étudiée et altérations probables des structures des rives issues des résultats du dispositif PRHYMO, ex-SYRAH-CE (source : Tamisier et al., 2017 ; Corine Land Cover)

32 Office français de la biodiversité – Direction générale, Service Eau et Milieux Aquatiques, attaché auprès du Pôle R&D pour la « Gestion des migrateurs amphihalins dans leur environnement », MIAME, OFB-INRAE-Institut Agro-UPPA
33 Université Paris 1 Panthéon Sorbonne – Laboratoire de Géographie Physique, UMR 8591
34 Université Paris Est Créteil – Laboratoire de Géographie Physique, UMR 8591
Annexe 8 : État écologique des cours d’eau et plans d’eau - Polluants spécifiques et leurs normes de qualité environnementale

Il a été proposé en GT Substances de ne pas utiliser la définition du très bon état pour les polluants spécifiques de l’état écologique fournie par la DCE, car cette définition est imprécise et n’est en pratique pas appliquée. En revanche, les conditions sur l’élément de qualité PSEE pour que l’état physico-chimique soit très bon ont été redéfinies (cf. section 2.3.1)

<table>
<thead>
<tr>
<th>Polluants synthétiques spécifiques</th>
<th>Très bon état</th>
<th>Bon état</th>
<th>État moyen</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>Concentrations ne dépassant pas les normes précises ci-après</td>
<td>Conditions permettant d’atteindre l’état moyen pour les éléments de qualité biologique.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Polluants non synthétiques spécifiques</th>
<th>Très bon état</th>
<th>Bon état</th>
<th>État moyen</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>Concentrations ne dépassant pas les normes précises ci-après</td>
<td>Conditions permettant d’atteindre l’état moyen pour les éléments de qualité biologique.</td>
<td></td>
</tr>
</tbody>
</table>

1. Polluants spécifiques non synthétiques

Fraction à analyser : eau filtrée

<table>
<thead>
<tr>
<th>Code Sandre</th>
<th>Nom substance</th>
<th>NQE exprimée en concentration moyenne annuelle – eaux douces de surface [µg/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1383</td>
<td>Zinc</td>
<td>7,8</td>
</tr>
<tr>
<td>1369</td>
<td>Arsenic</td>
<td>0,83</td>
</tr>
<tr>
<td>1392</td>
<td>Cuivre</td>
<td>1</td>
</tr>
<tr>
<td>1389</td>
<td>Chrome</td>
<td>3,4</td>
</tr>
</tbody>
</table>

Comme pour les paramètres de l’état chimique, les concentrations aux métaux peuvent être corrigées en premier lieu par la biodisponibilité (notamment en utilisant le modèle BLM, applicable aux éléments Cu et Zn, présenté ci-dessous), et si besoin par le fond géochimique lorsqu’une étude a permis de le définir.

Une note détaillant l’utilisation du modèle BLM sera disponible début 2024 sur le site www.eaufrance.fr

35 Filtration à travers un filtre de 0,45 micromètres ou par tout autre traitement préliminaire équivalent
2. Polluants spécifiques synthétiques

Fraction à analyser : eau brute

<table>
<thead>
<tr>
<th>Code Sandre</th>
<th>Nom substance</th>
<th>Adour Garonne</th>
<th>Afrieois-Picardie</th>
<th>Loire-Bretagne</th>
<th>Rhône-Méditerranée</th>
<th>Corse</th>
<th>Seine-Normandie</th>
<th>Seine-Guadeloupe</th>
<th>Guadeloupe</th>
<th>Martinique</th>
<th>Mayotte</th>
<th>Réunion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1136</td>
<td>Chlortoluron</td>
<td>X</td>
<td>X X X X X X X X X X</td>
<td>X X X X X X X X X X</td>
<td>0,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1670</td>
<td>Métazachlor</td>
<td>X X X X X X X X X</td>
<td>X</td>
<td>0,019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1105</td>
<td>Aminotriazole</td>
<td>X X X X X X X X</td>
<td>X X X X X X X X X</td>
<td>X X X X X X X X X</td>
<td>0,08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1882</td>
<td>Nicosulfuron</td>
<td>X X X X X</td>
<td>X</td>
<td>0,035</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1667</td>
<td>Oxadiazon</td>
<td>X X X X X</td>
<td>X X X X X X X X X</td>
<td>0,09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1907</td>
<td>AMPA</td>
<td>X X X X X X X X X</td>
<td>X X X X X X X X X</td>
<td>452</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1506</td>
<td>Glyphosate</td>
<td>X X X X X X X X X</td>
<td>X X X X X X X X X</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1113</td>
<td>Bentazone</td>
<td>X X X X</td>
<td>X</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1212</td>
<td>2,4 MCPA</td>
<td>X X X X X X X X X</td>
<td>X X X X X X X X X</td>
<td>0,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1814</td>
<td>Diflufenicanil</td>
<td>X X X X X</td>
<td>X</td>
<td>0,01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1359</td>
<td>Cyprodinil</td>
<td>X X X X</td>
<td>X</td>
<td>0,026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1877</td>
<td>Imidaclopride</td>
<td>X X</td>
<td>X</td>
<td>0,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1206</td>
<td>Iprodione</td>
<td>X X X X X X X X X</td>
<td>X X X X X X X X X</td>
<td>0,35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1141</td>
<td>2,4D</td>
<td>X X X X X X X X</td>
<td>X X X X X X X X X</td>
<td>2,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1951</td>
<td>Azoxystoffine</td>
<td>X X X X X X X X X</td>
<td>X X X X X X X X X</td>
<td>0,95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1278</td>
<td>Toluène</td>
<td>X X X X</td>
<td>X</td>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1847</td>
<td>Phosphate de tributyle</td>
<td>X X X X X X X X</td>
<td>X X X X X X X X X</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1584</td>
<td>Biphényle</td>
<td>X X</td>
<td>X</td>
<td>3,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5526</td>
<td>Boscalid</td>
<td>X X</td>
<td>X</td>
<td>11,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1796</td>
<td>Métaldéhyde</td>
<td>X X</td>
<td>X</td>
<td>60,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1694</td>
<td>Tebuconazole</td>
<td>X X</td>
<td>X</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1474</td>
<td>Chlorophosphate</td>
<td>X X X X</td>
<td>X</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1780</td>
<td>Xylène</td>
<td>X X</td>
<td>X</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1209</td>
<td>Linuron</td>
<td>X X X X</td>
<td>X</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1713</td>
<td>Thiabendazole</td>
<td>X X X X</td>
<td>X</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1234</td>
<td>Pendiméthaline</td>
<td>X X</td>
<td>X</td>
<td>0,02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1866</td>
<td>Chlordécone</td>
<td>X X X X X X</td>
<td>5e-06*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*En complément, pour la chlordécone, les normes suivantes s’appliquent :

- norme de qualité environnementale exprimée en concentration moyenne annuelle dans le biote : 3 µg/kg (poids frais) ;

- norme de qualité environnementale exprimée en concentration moyenne annuelle dans les eaux côtières et de transition : 5e-07 µg/l.

Lorsque le suivi a été réalisé dans le biote, la norme biote s’applique et suffit à évaluer l’état.
Annexe 9 : État écologique des plans d’eau - éléments biologiques

Six indices biologiques sont disponibles pour évaluer l’état ou le potentiel écologique des plans d’eau hexagonaux et de Corse :
- l’indice phytoplanctonique lacustre (IPLAC) ;
- l’indice biologique macrophytique en lac (IBML) ;
- l’indice ichthyofaune lacustre (IIL) ;
- l’indice ichthyofaune retenue (IIR) ;
- l’indice macroinvertébrés lacustre (IML)
- l’indice biologique diatomées en lac (IBDL).

Ces indices sont applicables pour évaluer l’état ou le potentiel écologique des plans d’eau de France hexagonale et de Corse :

<table>
<thead>
<tr>
<th>Indice</th>
<th>Typologie de plans d’eau</th>
<th>Plans d’eau naturels</th>
<th>Plans d’eau d’origine anthropique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indice phytoplanctonique lacustre (IPLAC)</td>
<td>Applicable</td>
<td>Applicable</td>
<td></td>
</tr>
<tr>
<td>Indice biologique macrophytique en lac (IBML)</td>
<td>Applicable</td>
<td>Calculable mais non utilisé pour l’évaluation</td>
<td></td>
</tr>
<tr>
<td>Indice Ichthyofaune lacustre (IIL)</td>
<td>Applicable</td>
<td>Non applicable</td>
<td></td>
</tr>
<tr>
<td>Indice ichthyofaune retenue (IIR)</td>
<td>Non applicable</td>
<td>Applicable</td>
<td></td>
</tr>
<tr>
<td>indice macroinvertébrés lacustre (IML)</td>
<td>Applicable</td>
<td>Applicable*</td>
<td></td>
</tr>
<tr>
<td>indice biologique diatomées en lac (IBDL)</td>
<td>Applicable</td>
<td>Applicable</td>
<td></td>
</tr>
</tbody>
</table>

*L’IML ne s’applique pas aux plans d’eau fortement modifiés/artificiels qui ne rempliraient pas les conditions nécessaires au protocole de prélèvement de l’indice, à savoir un niveau du plan d’eau stabilisé pendant au moins 15 jours précédant le prélèvement (entre mars et juillet).

De plus, ces indices ne sont à appliquer que sur les plans d’eau pour lesquels l’élément de qualité biologique correspondant est considéré pertinent, d’après le tableau 3 de l’annexe I de l’arrêté « surveillance » du 25 janvier 2010 modifié qui précise la pertinence des éléments de qualité biologique selon les types de plans d’eau.

Les valeurs des limites de classes d’état, exprimées en EQR, sont énoncées ci-après.

Phytoplancton – indice phytoplanctonique lacustre (IPLAC)
(code Sandre : 1017)

L’IPLAC est constitué de deux métriques :
- Métrique de Biomasse Algale totale (MBA) rend compte de la biomasse phytoplanctonique totale (chlorophylle (a)) ;
- Métrique de Composition Spécifique (MCS) traduit l’abondance et la composition taxonomique.

Il répond principalement aux pressions relatives au niveau trophique (pollution organique, eutrophisation).

Valeurs des limites de classes d’état, exprimées en EQR, pour l’Indice Phytoplanctonique Lacustre (IPLAC)

<table>
<thead>
<tr>
<th>ÉLÉMENTS DE QUALITÉ</th>
<th>INDICE</th>
<th>LIMITES DES CLASSES D’ETAT en EQR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phytoplancton</td>
<td>IPLAC</td>
<td>Très bon / Bon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,8</td>
</tr>
</tbody>
</table>

Macrophytes – indice biologique macrophytique en lac (IBML) (code Sandre : 1020)

L’IBML est composé d’une métrique : la note de trophie, qui rend compte à la fois de l’abondance et de la composition des communautés de macrophytes.

Il répond principalement aux pressions relatives au niveau trophique (pollution organique, eutrophisation).

Valeurs de limites de classes d’état, exprimées en EQR, pour l’indice biologique macrophytique en lac (IBML)

<table>
<thead>
<tr>
<th>ÉLÉMENTS DE QUALITÉ</th>
<th>INDICE</th>
<th>LIMITES DES CLASSES D’ETAT IBML en EQR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macrophytes</td>
<td>IBML</td>
<td>Très bon / Bon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,8</td>
</tr>
</tbody>
</table>

Poissons – Indice Ichtyofaune Lacustre (code Sandre : 1018)

L’IIL est composé de trois métriques qui traduisent respectivement :
- L’abondance totale des poissons capturés ;
- La biomasse totale des poissons capturés
- L’abondance des individus omnivores des poissons capturés.

Il répond principalement aux pressions relatives au niveau trophique (pollution organique, eutrophisation).

Valeurs de limites des classes d’état, exprimées en EQR, pour l’indice ichtyofaune lacustre (IIL)

<table>
<thead>
<tr>
<th>ÉLÉMENTS DE QUALITÉ</th>
<th>INDICE</th>
<th>LIMITES DES CLASSES D’ETAT IIL en EQR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poisson</td>
<td>IIL</td>
<td>Très bon / Bon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,733</td>
</tr>
</tbody>
</table>
Poissons – Indice Ichtyofaune Retenue (IIR)
(code Sandre : 1095)

L'IIR est composé de trois métriques qui traduisent respectivement :
- La biomasse totale des poissons capturés ;
- La biomasse des poissons capturés appartenant aux espèces planctivores ;
- La biomasse des poissons capturés appartenant aux espèces non-natives (hors salmonidés).
Il répond principalement aux pressions relatives au niveau trophique (pollution organique, eutrophisation) et aux introductions d’espèces non-natives.

Valeurs de limites des classes d’état, exprimées en EQR, pour l’indice ichthyofaune retenue (IIR)

<table>
<thead>
<tr>
<th>ÉLÉMENTS DE QUALITE</th>
<th>INDICE</th>
<th>LIMITES DES CLASSES D’ETAT IIR en EQR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poisson</td>
<td>IIR</td>
<td>Bon et plus/Moyen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,6</td>
</tr>
</tbody>
</table>

Macroinvertébrés – Indice Macroinvertébrés Lacustre
(codes Sandre : 8965 (IML E-PE) ou 8969 (IML PE))

L’IML E-PE et l’IML PE sont chacun composés de trois métriques qui répondent respectivement :
- Aux altérations chimiques ;
- Aux altérations de l’habitat littoral du plan d’eau ;
- Aux altérations liées au marnage.
L’IML répond donc aux pressions d’ordre chimique et hydromorphologique (habitats et marnage).

Valeurs de limites des classes d’état, exprimées en EQR, pour l’indice macroinvertébrés lacustre (IML)

<table>
<thead>
<tr>
<th>ÉLÉMENTS DE QUALITE</th>
<th>INDICE</th>
<th>LIMITES DES CLASSES D’ETAT IML (E-PE et PE) en EQR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macroinvertébrés</td>
<td>IML</td>
<td>Très bon / Bon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,80</td>
</tr>
</tbody>
</table>

Phytobenthos – Indice Biologique Diatomées en Lac (IBDL)
(code Sandre : 8973)

L’IBDL est composé de quatre métriques basées sur le phosphore total, les matières en suspension, la demande biologique en oxygène et l’azote Kjeldahl.
Il répond ainsi aux pressions d’ordre trophique (pollution organique, eutrophisation).

Valeurs de limites des classes d’état, exprimées en EQR, pour l’indice biologique diatomées en lac (IBDL)

<table>
<thead>
<tr>
<th>ÉLÉMENTS DE QUALITE</th>
<th>INDICE</th>
<th>LIMITES DES CLASSES D’ETAT IBDL en EQR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Très bon / Bon</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phytobenthos</td>
<td>IBDL</td>
<td>0.80</td>
</tr>
</tbody>
</table>
Annexe 10 : État écologique des plans d’eau - Paramètres physico-chimiques généraux

Localisation du point de prélèvement

Les paramètres physico-chimiques généraux sont mesurés sur un échantillon intégré sur la zone euphotique (2,5 fois la transparence au disque de Secchi) à l’aplomb du point de plus grande profondeur du plan d’eau.

La localisation du point de prélèvement pour les plans d’eau s’appuiera sur les relevés bathymétriques issus du protocole de terrain d’analyse bathymétrique de la forme et des variations de profondeur du plan d’eau, le protocole Bathymétrie mis en œuvre dans le cadre de la surveillance des éléments de qualité hydromorphologique.

Ces localisations sont à respecter afin de garantir la cohérence entre les différentes années et campagnes annuelles.

La règle du point le plus profond du plan d’eau est à interpréter conformément au protocole standardisé d’échantillonnage, de conservation, d’observation et de dénombrement du phytoplancton en plan d’eau pour la mise en œuvre de la DCE version 3.3.1 chapitre 2 : en dehors de la zone d’influence du barrage. Il s’agit donc de rechercher le fond de la cuvette du plan d’eau sans tenir compte, notamment, du chenal de vidange du canal à l’amont de l’ouvrage d’évacuation des eaux ou d’un abaissement du fond en pied de digue. Et comme le préconise le même document, le site d’échantillonnage doit être à une distance suffisante de la berge : ceci vaut également pour les digues et barrages. Dans le cas de plans d’eau fractionnés, la recherche de la représentativité conduit également à se placer préférentiellement dans le plan d’eau principal, même si un plan d’eau annexe de la même masse d’eau s’avère plus profond.

A titre indicatif, la notion de distance suffisante de la berge peut s’interpréter comme une distance à la berge d’environ « 10*Zmax ».

Eléments de qualité physico-chimique : température de l’eau, bilan d’oxygène, salinité, état d’acidification

<table>
<thead>
<tr>
<th>Paramètres par élément de qualité</th>
<th>Limites des classes d’état</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>très bon</td>
</tr>
<tr>
<td>Bilan de l’oxygène</td>
<td></td>
</tr>
<tr>
<td>Présence ou absence d’une</td>
<td>*</td>
</tr>
<tr>
<td>désoxygénéation de l’hypolimnion</td>
<td></td>
</tr>
<tr>
<td>en % du déficit observé entre la surface et le fond pendant la période estivale (pour les lacs stratifiés)</td>
<td></td>
</tr>
<tr>
<td>Salinité</td>
<td></td>
</tr>
<tr>
<td>Acidification</td>
<td></td>
</tr>
<tr>
<td>Température</td>
<td></td>
</tr>
</tbody>
</table>

Pour l’élément de qualité bilan d’oxygène, la valeur seuil du bon état est donnée à titre indicatif. L’élément de qualité est classé en état bon si la désoxygénation est inférieure à 50 %.
L’Ilox, indice de saturation en oxygène, peut être pris en compte à titre complémentaire afin de conforter l’évaluation de l’état de l’élément de qualité relatif au bilan d’oxygène.

S’agissant des éléments de qualité salinité, état d’acidification et température de l’eau aucune valeur n’est établie à ce stade des connaissances.

Éléments de qualité physico-chimique : concentration en nutriments et transparence

Le tableau ci-dessous indique les valeurs des limites de classe pour les paramètres des éléments physico-chimiques concentration en nutriments et transparence pour les plans d’eau. Les limites de classes pour ces paramètres varient en fonction de la profondeur moyenne théorique (métrique définie comme étant égale à la division du volume par la surface) des plans d’eau. Pour les plans d’eau soumis à de fortes variations de niveau d’eau, la profondeur moyenne théorique du plan d’eau est établie en référence à la cote moyenne du plan d’eau ou à la cote normale d’exploitation. Les méthodes utilisées pour déterminer les limites de classes sont précisées dans le document suivant :

Paramètres physico-chimiques des éléments nutriment et transparence et calculs des valeurs-seuils

<table>
<thead>
<tr>
<th>Paramètres physico-chimiques</th>
<th>Unité</th>
<th>Limite</th>
<th>Paramètres de calcul</th>
<th>Calcul</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phoshore total (médiane(^1))</td>
<td>µg P.L(^{-1})</td>
<td>Très bon-Bon</td>
<td>a = 44,174, b = -0,315, c = 57,744, d = -0,324</td>
<td>minimum entre [aZ_{moy}^b] et [c(Z_{moy}+1)^d]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bon-Moyen</td>
<td>61,714</td>
<td>95,841 -0,267</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moyen-Médium</td>
<td>86,234</td>
<td>159,92, -0,210</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mauvais</td>
<td>120,63</td>
<td>268,66, -0,153</td>
</tr>
<tr>
<td>Ammonium (valeur maximale)</td>
<td>µg NH(_4).L(^{-1})</td>
<td>Très bon-Bon</td>
<td>223,58</td>
<td>199,25 -0,223</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bon-Moyen</td>
<td>290,91</td>
<td>283,69, -0,185</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moyen-Médium</td>
<td>378,71</td>
<td>404,53, -0,145</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mauvais</td>
<td>494,03</td>
<td>578,19, -0,106</td>
</tr>
<tr>
<td>Profondeur du disque de Secchi (médiane)</td>
<td>m</td>
<td>Très bon-Bon</td>
<td>1,1741</td>
<td>9989,277</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bon-Moyen</td>
<td>0,8703</td>
<td>6492,228</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moyen-Médium</td>
<td>0,6447</td>
<td>4208,180</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mauvais</td>
<td>0,4766</td>
<td>2722,131</td>
</tr>
<tr>
<td>Nitrates(^2) (valeur maximale)</td>
<td>µg NO(_3).L(^{-1})</td>
<td>Très bon-Bon</td>
<td>2200</td>
<td>1200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bon-Moyen</td>
<td>5300</td>
<td>2600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moyen-Médium</td>
<td>12600</td>
<td>5600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mauvais</td>
<td>30100</td>
<td>12100</td>
</tr>
</tbody>
</table>

\(^1\) Pour le Phosphore total, le fait de prendre en compte la valeur médiane peut parfois conduire, selon les mesures disponibles, à des valeurs faibles et non déclassantes en contradiction avec la valeur de l’indice IPLAC. Dans ces cas, une expertise sur la distribution des valeurs de phosphore total est à réaliser et les valeurs-seuils de phosphore total calculées pourront être considérées à titre indicatives.

Les valeurs-seuils calculées à l’aide du tableau ci-dessus sont arrondies :

- au microgramme/litre supérieur pour le phosphore total et l’ammonium ;
- au centimètre près inférieur pour la profondeur et la transparence.
Les valeurs-seuils sont comprises dans la classe supérieure.

La classification de l’état physico-chimique prend en compte les données acquises conformément aux dispositions de l’article 12 et de l’annexe 9 de l’arrêté évaluation du 25 janvier 2010 modifié. La classification de l’état physico-chimique des plans d’eau s’établit de la manière suivante :

- lorsque le plan d’eau fait l’objet d’une seule année de suivi au cours de la période à prendre en compte au titre de l’article 12, la classification s’établit en comparant aux valeurs du tableau ci-dessus :
 - la médiane des valeurs observées pour le phosphore total et la profondeur du disque de Secchi ;
 - la valeur maximale pour l’ammonium et les nitrates ;

- lorsque le plan d’eau fait l’objet de plusieurs années de suivis au cours de la période à prendre en compte au titre de l’article 12, la classification s’établit en comparant aux valeurs du tableau ci-dessus les valeurs médianes des évaluations annuelles.

Lorsque les concentrations mesurées pour un paramètre sont inférieures à sa limite de quantification, la valeur de la concentration à prendre en compte est celle de la limite de quantification de ce paramètre divisée par deux.

A titre indicatif, les valeurs-seuils par plan d’eau pour les différents paramètres sont données ci-après.
<table>
<thead>
<tr>
<th>Code masse d'eau</th>
<th>Profondeur moyenne théorique</th>
<th>Bassin</th>
<th>Phosphore total (en µg de Phosphore / l)</th>
<th>Ammonium (en µg d'Ammonium / l)</th>
<th>Secchi (en mètre)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TB</td>
<td>B</td>
<td>Mo</td>
<td>Me</td>
<td>TB</td>
</tr>
<tr>
<td>FL1</td>
<td>AG</td>
<td>31,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL10</td>
<td>AG</td>
<td>5,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL100</td>
<td>AG</td>
<td>12,45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL101</td>
<td>AG</td>
<td>6,29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL102</td>
<td>AG</td>
<td>5,16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL103</td>
<td>AG</td>
<td>12,09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL104</td>
<td>AG</td>
<td>6,45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL105</td>
<td>AG</td>
<td>1,08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL106</td>
<td>AG</td>
<td>6,65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL107</td>
<td>AG</td>
<td>5,33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL11</td>
<td>AG</td>
<td>8,69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL12</td>
<td>AG</td>
<td>13,05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL13</td>
<td>AG</td>
<td>4,15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL14</td>
<td>AG</td>
<td>8,73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL15</td>
<td>AG</td>
<td>0,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL16</td>
<td>AG</td>
<td>22,37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL17</td>
<td>AG</td>
<td>6,45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL18</td>
<td>AG</td>
<td>45,22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL19</td>
<td>AG</td>
<td>7,74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL2</td>
<td>AG</td>
<td>9,67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL20</td>
<td>AG</td>
<td>5,59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL21</td>
<td>AG</td>
<td>55,89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL22</td>
<td>AG</td>
<td>24,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL23</td>
<td>AG</td>
<td>3,03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL24</td>
<td>AG</td>
<td>56,73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL25</td>
<td>AG</td>
<td>3,65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL26</td>
<td>AG</td>
<td>18,91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL27</td>
<td>AG</td>
<td>3,41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL28</td>
<td>AG</td>
<td>10,33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL29</td>
<td>AG</td>
<td>4,38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL3</td>
<td>AG</td>
<td>5,8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

102
<p>| FL30 | AG | 28.87 | 16 | 22 | 31 | 44 | 94 | 128 | 169 | 222 | 3.05 | 2.22 | 1.62 | 1.19 |
| FL31 | AG | 13.61 | 20 | 28 | 39 | 55 | 110 | 154 | 202 | 266 | 2.46 | 1.8 | 1.32 | 0.97 |
| FL32 | AG | 28.38 | 16 | 22 | 31 | 44 | 94 | 129 | 170 | 223 | 3.03 | 2.21 | 1.62 | 1.18 |
| FL33 | AG | 16.00 | 19 | 27 | 37 | 53 | 106 | 148 | 195 | 256 | 2.58 | 1.89 | 1.38 | 1.01 |
| FL34 | AG | 22.77 | 17 | 24 | 34 | 47 | 99 | 136 | 179 | 235 | 2.85 | 2.08 | 1.52 | 1.11 |
| FL35 | AG | 10.60 | 21 | 30 | 42 | 60 | 116 | 164 | 215 | 282 | 2.29 | 1.68 | 1.23 | 0.9 |
| FL36 | AG | 24.61 | 17 | 23 | 33 | 46 | 97 | 133 | 175 | 231 | 2.91 | 2.13 | 1.55 | 1.14 |
| FL37 | AG | 9.84 | 22 | 31 | 43 | 61 | 117 | 167 | 219 | 287 | 2.25 | 1.65 | 1.21 | 0.89 |
| FL38 | AG | 4.32 | 28 | 40 | 56 | 78 | 138 | 204 | 267 | 349 | 1.78 | 1.31 | 0.96 | 0.71 |
| FL39 | AG | 9.39 | 22 | 31 | 44 | 62 | 119 | 169 | 221 | 290 | 2.22 | 1.63 | 1.19 | 0.87 |
| FL4 | AG | 16 | 19 | 27 | 37 | 53 | 106 | 148 | 195 | 256 | 2.58 | 1.89 | 1.38 | 1.01 |
| FL40 | AG | 6.91 | 24 | 34 | 48 | 68 | 126 | 182 | 238 | 312 | 2.03 | 1.49 | 1.1 | 0.8 |
| FL41 | AG | 4.70 | 28 | 39 | 54 | 76 | 136 | 200 | 261 | 342 | 1.82 | 1.34 | 0.99 | 0.72 |
| FL42 | AG | 4.38 | 28 | 39 | 55 | 78 | 137 | 203 | 266 | 348 | 1.79 | 1.31 | 0.97 | 0.71 |
| FL43 | AG | 32.97 | 15 | 21 | 30 | 42 | 91 | 124 | 164 | 215 | 3.17 | 2.31 | 1.68 | 1.23 |
| FL44 | AG | 9.54 | 22 | 31 | 44 | 62 | 118 | 168 | 220 | 289 | 2.23 | 1.63 | 1.2 | 0.88 |
| FL45 | AG | 7.48 | 24 | 34 | 47 | 66 | 124 | 178 | 234 | 306 | 2.08 | 1.53 | 1.12 | 0.82 |
| FL46 | AG | 25.62 | 16 | 23 | 32 | 46 | 96 | 132 | 174 | 229 | 2.95 | 2.15 | 1.57 | 1.15 |
| FL47 | AG | 5.30 | 27 | 37 | 52 | 73 | 133 | 194 | 254 | 332 | 1.88 | 1.39 | 1.02 | 0.75 |
| FL48 | AG | 20.05 | 18 | 25 | 35 | 49 | 101 | 140 | 184 | 242 | 2.75 | 2.01 | 1.47 | 1.07 |
| FL49 | AG | 3.27 | 31 | 43 | 60 | 85 | 145 | 218 | 285 | 373 | 1.64 | 1.21 | 0.89 | 0.66 |
| FL5 | AG | 9.18 | 22 | 31 | 44 | 62 | 119 | 170 | 222 | 292 | 2.2 | 1.61 | 1.18 | 0.87 |
| FL50 | AG | 11.37 | 21 | 29 | 41 | 58 | 114 | 161 | 211 | 277 | 2.34 | 1.71 | 1.26 | 0.92 |
| FL51 | AG | 16.34 | 19 | 26 | 37 | 52 | 106 | 147 | 194 | 254 | 2.59 | 1.9 | 1.39 | 1.02 |
| FL52 | AG | 5.44 | 26 | 37 | 52 | 73 | 132 | 193 | 252 | 330 | 1.9 | 1.4 | 1.03 | 0.75 |
| FL53 | AG | 10.72 | 21 | 30 | 42 | 59 | 115 | 163 | 214 | 281 | 2.3 | 1.69 | 1.24 | 0.91 |
| FL54 | AG | 8.25 | 23 | 33 | 46 | 64 | 122 | 174 | 228 | 299 | 2.14 | 1.57 | 1.15 | 0.84 |
| FL55 | AG | 2.32 | 34 | 48 | 67 | 94 | 153 | 228 | 310 | 405 | 1.49 | 1.1 | 0.81 | 0.6 |
| FL56 | AG | 0.78 | 48 | 67 | 94 | 131 | 176 | 256 | 373 | 525 | 1.17 | 0.81 | 0.6 | 0.45 |
| FL57 | AG | 8.33 | 23 | 32 | 46 | 64 | 121 | 174 | 228 | 299 | 2.14 | 1.57 | 1.15 | 0.85 |
| FL58 | AG | 12.88 | 20 | 28 | 40 | 56 | 111 | 156 | 205 | 269 | 2.42 | 1.77 | 1.3 | 0.95 |
| FL59 | AG | 11.23 | 21 | 30 | 42 | 59 | 114 | 161 | 212 | 278 | 2.33 | 1.71 | 1.25 | 0.92 |
| FL6 | AG | 41.06 | 14 | 20 | 28 | 40 | 87 | 118 | 155 | 204 | 3.37 | 2.45 | 1.79 | 1.31 |
| FL60 | AG | 30.39 | 16 | 22 | 31 | 43 | 93 | 127 | 167 | 219 | 3.09 | 2.25 | 1.65 | 1.2 |
| FL61 | AG | 10.57 | 21 | 30 | 42 | 60 | 116 | 164 | 215 | 282 | 2.29 | 1.68 | 1.23 | 0.9 |
| FL62 | AG | 20.36 | 18 | 25 | 35 | 49 | 101 | 140 | 184 | 241 | 2.76 | 2.02 | 1.47 | 1.08 |
| FL63 | AG | 1.94 | 36 | 51 | 71 | 99 | 157 | 233 | 323 | 423 | 1.42 | 1.05 | 0.77 | 0.57 |</p>
<table>
<thead>
<tr>
<th>FL64</th>
<th>AG</th>
<th>6.98</th>
<th>24</th>
<th>34</th>
<th>48</th>
<th>68</th>
<th>126</th>
<th>181</th>
<th>238</th>
<th>311</th>
<th>2.04</th>
<th>1.5</th>
<th>1.1</th>
<th>0.81</th>
</tr>
</thead>
<tbody>
<tr>
<td>FL65</td>
<td>AG</td>
<td>5.57</td>
<td>26</td>
<td>37</td>
<td>51</td>
<td>72</td>
<td>131</td>
<td>192</td>
<td>251</td>
<td>329</td>
<td>1.91</td>
<td>1.4</td>
<td>1.03</td>
<td>0.76</td>
</tr>
<tr>
<td>FL66</td>
<td>AG</td>
<td>41.45</td>
<td>14</td>
<td>20</td>
<td>28</td>
<td>40</td>
<td>87</td>
<td>117</td>
<td>155</td>
<td>204</td>
<td>3.38</td>
<td>2.46</td>
<td>1.79</td>
<td>1.31</td>
</tr>
<tr>
<td>FL67</td>
<td>AG</td>
<td>2.83</td>
<td>32</td>
<td>45</td>
<td>63</td>
<td>89</td>
<td>148</td>
<td>222</td>
<td>295</td>
<td>386</td>
<td>1.58</td>
<td>1.16</td>
<td>0.86</td>
<td>0.63</td>
</tr>
<tr>
<td>FL68</td>
<td>AG</td>
<td>11.85</td>
<td>21</td>
<td>29</td>
<td>41</td>
<td>58</td>
<td>113</td>
<td>159</td>
<td>209</td>
<td>275</td>
<td>2.37</td>
<td>1.73</td>
<td>1.27</td>
<td>0.93</td>
</tr>
<tr>
<td>FL69</td>
<td>AG</td>
<td>5.16</td>
<td>27</td>
<td>38</td>
<td>53</td>
<td>74</td>
<td>133</td>
<td>195</td>
<td>255</td>
<td>335</td>
<td>1.87</td>
<td>1.38</td>
<td>1.01</td>
<td>0.74</td>
</tr>
<tr>
<td>FL7</td>
<td>AG</td>
<td>6.19</td>
<td>25</td>
<td>36</td>
<td>50</td>
<td>70</td>
<td>129</td>
<td>187</td>
<td>245</td>
<td>320</td>
<td>1.97</td>
<td>1.45</td>
<td>1.06</td>
<td>0.78</td>
</tr>
<tr>
<td>FL70</td>
<td>AG</td>
<td>52.62</td>
<td>13</td>
<td>18</td>
<td>26</td>
<td>37</td>
<td>82</td>
<td>111</td>
<td>146</td>
<td>193</td>
<td>3.62</td>
<td>2.63</td>
<td>1.91</td>
<td>1.4</td>
</tr>
<tr>
<td>FL71</td>
<td>AG</td>
<td>16.14</td>
<td>19</td>
<td>26</td>
<td>37</td>
<td>53</td>
<td>106</td>
<td>148</td>
<td>194</td>
<td>255</td>
<td>2.59</td>
<td>1.89</td>
<td>1.38</td>
<td>1.01</td>
</tr>
<tr>
<td>FL72</td>
<td>AG</td>
<td>0.57</td>
<td>50</td>
<td>74</td>
<td>103</td>
<td>143</td>
<td>181</td>
<td>261</td>
<td>379</td>
<td>552</td>
<td>1.13</td>
<td>0.74</td>
<td>0.55</td>
<td>0.41</td>
</tr>
<tr>
<td>FL73</td>
<td>AG</td>
<td>27.44</td>
<td>16</td>
<td>23</td>
<td>32</td>
<td>45</td>
<td>95</td>
<td>130</td>
<td>171</td>
<td>225</td>
<td>3.01</td>
<td>2.19</td>
<td>1.6</td>
<td>1.17</td>
</tr>
<tr>
<td>FL74</td>
<td>AG</td>
<td>15.57</td>
<td>19</td>
<td>27</td>
<td>38</td>
<td>53</td>
<td>107</td>
<td>149</td>
<td>196</td>
<td>257</td>
<td>2.56</td>
<td>1.87</td>
<td>1.37</td>
<td>1</td>
</tr>
<tr>
<td>FL75</td>
<td>AG</td>
<td>7.56</td>
<td>24</td>
<td>33</td>
<td>47</td>
<td>66</td>
<td>124</td>
<td>178</td>
<td>233</td>
<td>306</td>
<td>2.08</td>
<td>1.53</td>
<td>1.12</td>
<td>0.82</td>
</tr>
<tr>
<td>FL76</td>
<td>AG</td>
<td>0.91</td>
<td>46</td>
<td>64</td>
<td>89</td>
<td>124</td>
<td>173</td>
<td>252</td>
<td>369</td>
<td>505</td>
<td>1.2</td>
<td>0.85</td>
<td>0.63</td>
<td>0.47</td>
</tr>
<tr>
<td>FL77</td>
<td>AG</td>
<td>8.62</td>
<td>23</td>
<td>32</td>
<td>45</td>
<td>63</td>
<td>121</td>
<td>172</td>
<td>226</td>
<td>296</td>
<td>2.16</td>
<td>1.59</td>
<td>1.16</td>
<td>0.85</td>
</tr>
<tr>
<td>FL78</td>
<td>AG</td>
<td>13.32</td>
<td>20</td>
<td>28</td>
<td>40</td>
<td>56</td>
<td>110</td>
<td>155</td>
<td>203</td>
<td>267</td>
<td>2.45</td>
<td>1.79</td>
<td>1.31</td>
<td>0.96</td>
</tr>
<tr>
<td>FL79</td>
<td>AG</td>
<td>6.53</td>
<td>25</td>
<td>35</td>
<td>49</td>
<td>69</td>
<td>127</td>
<td>184</td>
<td>241</td>
<td>316</td>
<td>2</td>
<td>1.47</td>
<td>1.08</td>
<td>0.79</td>
</tr>
<tr>
<td>FL8</td>
<td>AG</td>
<td>9.72</td>
<td>22</td>
<td>31</td>
<td>43</td>
<td>61</td>
<td>118</td>
<td>167</td>
<td>219</td>
<td>288</td>
<td>2.24</td>
<td>1.64</td>
<td>1.2</td>
<td>0.88</td>
</tr>
<tr>
<td>FL80</td>
<td>AG</td>
<td>8.59</td>
<td>23</td>
<td>32</td>
<td>45</td>
<td>63</td>
<td>121</td>
<td>172</td>
<td>226</td>
<td>296</td>
<td>2.16</td>
<td>1.59</td>
<td>1.16</td>
<td>0.85</td>
</tr>
<tr>
<td>FL81</td>
<td>AG</td>
<td>5.44</td>
<td>26</td>
<td>37</td>
<td>52</td>
<td>73</td>
<td>132</td>
<td>193</td>
<td>252</td>
<td>330</td>
<td>1.9</td>
<td>1.4</td>
<td>1.03</td>
<td>0.75</td>
</tr>
<tr>
<td>FL82</td>
<td>AG</td>
<td>1.29</td>
<td>41</td>
<td>57</td>
<td>80</td>
<td>112</td>
<td>166</td>
<td>244</td>
<td>357</td>
<td>465</td>
<td>1.26</td>
<td>0.93</td>
<td>0.69</td>
<td>0.51</td>
</tr>
<tr>
<td>FL83</td>
<td>AG</td>
<td>11.02</td>
<td>21</td>
<td>30</td>
<td>42</td>
<td>59</td>
<td>115</td>
<td>162</td>
<td>213</td>
<td>279</td>
<td>2.32</td>
<td>1.7</td>
<td>1.25</td>
<td>0.91</td>
</tr>
<tr>
<td>FL84</td>
<td>AG</td>
<td>11.14</td>
<td>21</td>
<td>30</td>
<td>42</td>
<td>59</td>
<td>115</td>
<td>162</td>
<td>212</td>
<td>279</td>
<td>2.32</td>
<td>1.7</td>
<td>1.25</td>
<td>0.92</td>
</tr>
<tr>
<td>FL85</td>
<td>AG</td>
<td>9.02</td>
<td>23</td>
<td>32</td>
<td>44</td>
<td>63</td>
<td>120</td>
<td>170</td>
<td>223</td>
<td>293</td>
<td>2.19</td>
<td>1.61</td>
<td>1.18</td>
<td>0.87</td>
</tr>
<tr>
<td>FL86</td>
<td>AG</td>
<td>4.1</td>
<td>29</td>
<td>40</td>
<td>56</td>
<td>79</td>
<td>139</td>
<td>206</td>
<td>270</td>
<td>353</td>
<td>1.75</td>
<td>1.29</td>
<td>0.95</td>
<td>0.7</td>
</tr>
<tr>
<td>FL87</td>
<td>AG</td>
<td>33.76</td>
<td>15</td>
<td>21</td>
<td>30</td>
<td>42</td>
<td>91</td>
<td>123</td>
<td>163</td>
<td>214</td>
<td>3.19</td>
<td>2.32</td>
<td>1.69</td>
<td>1.24</td>
</tr>
<tr>
<td>FL88</td>
<td>AG</td>
<td>34.61</td>
<td>15</td>
<td>21</td>
<td>30</td>
<td>42</td>
<td>90</td>
<td>123</td>
<td>162</td>
<td>213</td>
<td>3.21</td>
<td>2.34</td>
<td>1.71</td>
<td>1.25</td>
</tr>
<tr>
<td>FL89</td>
<td>AG</td>
<td>0.6</td>
<td>50</td>
<td>73</td>
<td>101</td>
<td>141</td>
<td>180</td>
<td>261</td>
<td>378</td>
<td>551</td>
<td>1.14</td>
<td>0.75</td>
<td>0.56</td>
<td>0.41</td>
</tr>
<tr>
<td>FL9</td>
<td>AG</td>
<td>2</td>
<td>36</td>
<td>50</td>
<td>70</td>
<td>98</td>
<td>156</td>
<td>232</td>
<td>321</td>
<td>419</td>
<td>1.43</td>
<td>1.06</td>
<td>0.78</td>
<td>0.58</td>
</tr>
<tr>
<td>FL90</td>
<td>AG</td>
<td>24.46</td>
<td>17</td>
<td>23</td>
<td>33</td>
<td>46</td>
<td>97</td>
<td>134</td>
<td>176</td>
<td>231</td>
<td>2.91</td>
<td>2.12</td>
<td>1.55</td>
<td>1.13</td>
</tr>
<tr>
<td>FL91</td>
<td>AG</td>
<td>10.33</td>
<td>22</td>
<td>30</td>
<td>43</td>
<td>60</td>
<td>116</td>
<td>165</td>
<td>216</td>
<td>284</td>
<td>2.28</td>
<td>1.67</td>
<td>1.22</td>
<td>0.9</td>
</tr>
<tr>
<td>FL92</td>
<td>AG</td>
<td>18.19</td>
<td>18</td>
<td>26</td>
<td>36</td>
<td>51</td>
<td>103</td>
<td>144</td>
<td>189</td>
<td>248</td>
<td>2.67</td>
<td>1.95</td>
<td>1.43</td>
<td>1.05</td>
</tr>
<tr>
<td>FL93</td>
<td>AG</td>
<td>17.49</td>
<td>18</td>
<td>26</td>
<td>36</td>
<td>51</td>
<td>104</td>
<td>145</td>
<td>190</td>
<td>250</td>
<td>2.64</td>
<td>1.93</td>
<td>1.41</td>
<td>1.04</td>
</tr>
<tr>
<td>FL94</td>
<td>AG</td>
<td>3.58</td>
<td>30</td>
<td>42</td>
<td>59</td>
<td>83</td>
<td>142</td>
<td>213</td>
<td>279</td>
<td>365</td>
<td>1.69</td>
<td>1.24</td>
<td>0.92</td>
<td>0.67</td>
</tr>
<tr>
<td>FL95</td>
<td>AG</td>
<td>5.84</td>
<td>26</td>
<td>36</td>
<td>51</td>
<td>71</td>
<td>130</td>
<td>189</td>
<td>248</td>
<td>325</td>
<td>1.94</td>
<td>1.42</td>
<td>1.05</td>
<td>0.77</td>
</tr>
<tr>
<td>FL96</td>
<td>AG</td>
<td>4.23</td>
<td>28</td>
<td>40</td>
<td>56</td>
<td>78</td>
<td>138</td>
<td>205</td>
<td>268</td>
<td>351</td>
<td>1.77</td>
<td>1.3</td>
<td>0.96</td>
<td>0.7</td>
</tr>
<tr>
<td>FL97</td>
<td>AG</td>
<td>7.67</td>
<td>24</td>
<td>33</td>
<td>47</td>
<td>66</td>
<td>123</td>
<td>177</td>
<td>232</td>
<td>304</td>
<td>2.09</td>
<td>1.54</td>
<td>1.13</td>
<td>0.83</td>
</tr>
<tr>
<td>FL98</td>
<td>AG</td>
<td>3.82</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>41</td>
<td>58</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>FL99</td>
<td>AG</td>
<td>16.06</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>27</td>
<td>37</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>AL01</td>
<td>AP</td>
<td>1.74</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>52</td>
<td>73</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>AL02</td>
<td>AP</td>
<td>0.92</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>52</td>
<td>73</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>AL03</td>
<td>AP</td>
<td>1.62</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>57</td>
<td>80</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>AL04</td>
<td>AP</td>
<td>1.29</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>43</td>
<td>60</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>B2L05</td>
<td>AP</td>
<td>3.35</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>35</td>
<td>49</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>GL001</td>
<td>LB</td>
<td>6.39</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>28</td>
<td>40</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>GL002b</td>
<td>LB</td>
<td>12.92</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>24</td>
<td>34</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>GL002c</td>
<td>LB</td>
<td>21.28</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>46</td>
<td>65</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>GL004</td>
<td>LB</td>
<td>2.57</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>25</td>
<td>35</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>GL005</td>
<td>LB</td>
<td>20.72</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>15</td>
<td>22</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>GL006</td>
<td>LB</td>
<td>98.16</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>43</td>
<td>61</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>GL007</td>
<td>LB</td>
<td>3.26</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>52</td>
<td>73</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>GL008</td>
<td>LB</td>
<td>1.77</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>34</td>
<td>47</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>GL011</td>
<td>LB</td>
<td>7.47</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>33</td>
<td>46</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>GL013</td>
<td>LB</td>
<td>7.8</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>36</td>
<td>50</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>GL015</td>
<td>LB</td>
<td>5.97</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>26</td>
<td>36</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>GL016a</td>
<td>LB</td>
<td>17.5</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>49</td>
<td>69</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>GL016b</td>
<td>LB</td>
<td>2.15</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>39</td>
<td>55</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>GL017</td>
<td>LB</td>
<td>4.44</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>36</td>
<td>50</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>GL018</td>
<td>LB</td>
<td>5.93</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>41</td>
<td>57</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>GL019</td>
<td>LB</td>
<td>7.12</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>50</td>
<td>70</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>GL020</td>
<td>LB</td>
<td>3.91</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>31</td>
<td>43</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>GL021</td>
<td>LB</td>
<td>9.88</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>46</td>
<td>64</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>GL023</td>
<td>LB</td>
<td>2.69</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>32</td>
<td>45</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>GL027b</td>
<td>LB</td>
<td>8.58</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>34</td>
<td>48</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>GL027c</td>
<td>LB</td>
<td>7.25</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>32</td>
<td>46</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>GL029</td>
<td>LB</td>
<td>8.35</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>29</td>
<td>40</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>GL030</td>
<td>LB</td>
<td>12.45</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>61</td>
<td>86</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>GL032</td>
<td>LB</td>
<td>1.04</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>50</td>
<td>70</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>GL033</td>
<td>LB</td>
<td>1.99</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>29</td>
<td>41</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>GL034</td>
<td>LB</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>31</td>
<td>44</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>GL035</td>
<td>LB</td>
<td>9.58</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>42</td>
<td>59</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>GL036b</td>
<td>LB</td>
<td>3.62</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>29</td>
<td>40</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>GL036a</td>
<td>LB</td>
<td>12.3</td>
<td></td>
</tr>
</tbody>
</table>

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>GL038</td>
<td>LB</td>
<td>3</td>
<td>32 44 62 87</td>
<td>147 220 291 381</td>
<td>1.6 1.18 0.87 0.64</td>
<td></td>
</tr>
<tr>
<td>GL039</td>
<td>LB</td>
<td>7.55</td>
<td>24 33 47 66</td>
<td>124 178 233 306</td>
<td>2.08 1.53 1.12 0.82</td>
<td></td>
</tr>
<tr>
<td>GL040</td>
<td>LB</td>
<td>2.99</td>
<td>32 44 62 87</td>
<td>147 220 291 381</td>
<td>1.6 1.18 0.87 0.64</td>
<td></td>
</tr>
<tr>
<td>GL041</td>
<td>LB</td>
<td>1.34</td>
<td>41 57 79 111</td>
<td>165 243 354 462</td>
<td>1.27 0.94 0.7 0.52</td>
<td></td>
</tr>
<tr>
<td>GL043</td>
<td>LB</td>
<td>7.28</td>
<td>24 34 47 67</td>
<td>125 179 235 308</td>
<td>2.06 1.51 1.11 0.82</td>
<td></td>
</tr>
<tr>
<td>GL044</td>
<td>LB</td>
<td>2.45</td>
<td>34 47 66 93</td>
<td>152 226 306 400</td>
<td>1.51 1.12 0.82 0.61</td>
<td></td>
</tr>
<tr>
<td>GL045</td>
<td>LB</td>
<td>2.4</td>
<td>34 48 66 93</td>
<td>152 227 307 402</td>
<td>1.5 1.11 0.82 0.6</td>
<td></td>
</tr>
<tr>
<td>GL046</td>
<td>LB</td>
<td>5.6</td>
<td>26 37 51 72</td>
<td>131 191 251 328</td>
<td>1.91 1.41 1.03 0.76</td>
<td></td>
</tr>
<tr>
<td>GL047</td>
<td>LB</td>
<td>2.88</td>
<td>32 45 63 88</td>
<td>148 221 294 385</td>
<td>1.58 1.17 0.86 0.63</td>
<td></td>
</tr>
<tr>
<td>GL048</td>
<td>LB</td>
<td>1.93</td>
<td>36 51 71 99</td>
<td>157 233 324 423</td>
<td>1.41 1.05 0.77 0.57</td>
<td></td>
</tr>
<tr>
<td>GL050</td>
<td>LB</td>
<td>1.86</td>
<td>37 51 72 100</td>
<td>158 234 326 426</td>
<td>1.4 1.04 0.76 0.56</td>
<td></td>
</tr>
<tr>
<td>GL051</td>
<td>LB</td>
<td>1.01</td>
<td>44 62 86 121</td>
<td>171 250 366 493</td>
<td>1.21 0.87 0.65 0.48</td>
<td></td>
</tr>
<tr>
<td>GL052</td>
<td>LB</td>
<td>0.86</td>
<td>47 65 91 127</td>
<td>174 253 370 512</td>
<td>1.19 0.84 0.62 0.46</td>
<td></td>
</tr>
<tr>
<td>GL053</td>
<td>LB</td>
<td>0.8</td>
<td>48 67 93 130</td>
<td>175 255 372 522</td>
<td>1.17 0.82 0.61 0.45</td>
<td></td>
</tr>
<tr>
<td>GL054</td>
<td>LB</td>
<td>1.71</td>
<td>38 53 74 103</td>
<td>160 236 333 435</td>
<td>1.37 1.01 0.75 0.55</td>
<td></td>
</tr>
<tr>
<td>GL055</td>
<td>LB</td>
<td>2.86</td>
<td>32 45 63 88</td>
<td>148 222 294 385</td>
<td>1.58 1.17 0.86 0.63</td>
<td></td>
</tr>
<tr>
<td>GL056</td>
<td>LB</td>
<td>1.18</td>
<td>42 59 82 115</td>
<td>168 246 362 476</td>
<td>1.24 0.91 0.67 0.5</td>
<td></td>
</tr>
<tr>
<td>GL057</td>
<td>LB</td>
<td>8.44</td>
<td>23 32 45 64</td>
<td>121 173 227 298</td>
<td>2.15 1.58 1.16 0.85</td>
<td></td>
</tr>
<tr>
<td>GL058</td>
<td>LB</td>
<td>8.31</td>
<td>23 32 46 64</td>
<td>122 174 228 299</td>
<td>2.14 1.57 1.15 0.85</td>
<td></td>
</tr>
<tr>
<td>GL059b</td>
<td>LB</td>
<td>2.55</td>
<td>33 47 65 91</td>
<td>151 225 303 396</td>
<td>1.53 1.13 0.83 0.61</td>
<td></td>
</tr>
<tr>
<td>GL059a</td>
<td>LB</td>
<td>6.28</td>
<td>25 35 50 70</td>
<td>128 186 244 319</td>
<td>1.98 1.45 1.07 0.78</td>
<td></td>
</tr>
<tr>
<td>GL060</td>
<td>LB</td>
<td>4.14</td>
<td>29 40 56 79</td>
<td>139 206 269 353</td>
<td>1.76 1.29 0.95 0.7</td>
<td></td>
</tr>
<tr>
<td>GL061a</td>
<td>LB</td>
<td>20.67</td>
<td>17 25 35 49</td>
<td>101 139 183 240</td>
<td>2.77 2.02 1.48 1.08</td>
<td></td>
</tr>
<tr>
<td>GL061c</td>
<td>LB</td>
<td>4.39</td>
<td>28 39 55 78</td>
<td>137 203 266 348</td>
<td>1.79 1.31 0.97 0.71</td>
<td></td>
</tr>
<tr>
<td>GL061b</td>
<td>LB</td>
<td>5.62</td>
<td>26 37 51 72</td>
<td>131 191 250 328</td>
<td>1.92 1.41 1.04 0.76</td>
<td></td>
</tr>
<tr>
<td>GL063</td>
<td>LB</td>
<td>1</td>
<td>45 62 87 121</td>
<td>171 250 366 494</td>
<td>1.21 0.87 0.65 0.48</td>
<td></td>
</tr>
<tr>
<td>GL085b</td>
<td>LB</td>
<td>6.02</td>
<td>26 36 50 71</td>
<td>129 188 246 323</td>
<td>1.95 1.44 1.06 0.78</td>
<td></td>
</tr>
<tr>
<td>GL085a</td>
<td>LB</td>
<td>19.89</td>
<td>18 25 35 49</td>
<td>102 140 185 243</td>
<td>2.74 2 1.46 1.07</td>
<td></td>
</tr>
<tr>
<td>GL089</td>
<td>LB</td>
<td>2.65</td>
<td>33 46 64 90</td>
<td>150 224 300 392</td>
<td>1.55 1.14 0.84 0.62</td>
<td></td>
</tr>
<tr>
<td>GL090</td>
<td>LB</td>
<td>1.02</td>
<td>44 62 86 120</td>
<td>171 250 366 492</td>
<td>1.21 0.88 0.65 0.48</td>
<td></td>
</tr>
<tr>
<td>GL096</td>
<td>LB</td>
<td>26.89</td>
<td>16 23 32 45</td>
<td>95 131 172 226</td>
<td>2.99 2.18 1.59 1.16</td>
<td></td>
</tr>
<tr>
<td>GL097</td>
<td>LB</td>
<td>14.14</td>
<td>20 28 39 55</td>
<td>109 153 200 263</td>
<td>2.49 1.82 1.33 0.98</td>
<td></td>
</tr>
<tr>
<td>GL099</td>
<td>LB</td>
<td>0.99</td>
<td>45 62 87 122</td>
<td>171 250 367 496</td>
<td>1.21 0.87 0.64 0.47</td>
<td></td>
</tr>
<tr>
<td>GL100</td>
<td>LB</td>
<td>16.75</td>
<td>19 26 37 52</td>
<td>105 146 192 253</td>
<td>2.61 1.91 1.4 1.02</td>
<td></td>
</tr>
<tr>
<td>GL102</td>
<td>LB</td>
<td>0.99</td>
<td>45 62 87 122</td>
<td>171 250 367 496</td>
<td>1.21 0.87 0.64 0.47</td>
<td></td>
</tr>
<tr>
<td>GL103</td>
<td>LB</td>
<td>1.59</td>
<td>39 54 75 105</td>
<td>162 239 339 443</td>
<td>1.34 0.99 0.73 0.54</td>
<td></td>
</tr>
<tr>
<td>GL104</td>
<td>LB</td>
<td>2.01</td>
<td>36 50 70 98</td>
<td>156 232 320 419</td>
<td>1.43 1.06 0.78 0.58</td>
<td></td>
</tr>
<tr>
<td>GL105</td>
<td>LB</td>
<td>3,83</td>
<td></td>
</tr>
<tr>
<td>GL106</td>
<td>LB</td>
<td>2,01</td>
<td></td>
</tr>
<tr>
<td>GL107</td>
<td>LB</td>
<td>0,98</td>
<td></td>
</tr>
<tr>
<td>GL108</td>
<td>LB</td>
<td>1,8</td>
<td></td>
</tr>
<tr>
<td>GL109</td>
<td>LB</td>
<td>3,63</td>
<td></td>
</tr>
<tr>
<td>GL110</td>
<td>LB</td>
<td>2,02</td>
<td></td>
</tr>
<tr>
<td>GL111</td>
<td>LB</td>
<td>4,36</td>
<td></td>
</tr>
<tr>
<td>GL112</td>
<td>LB</td>
<td>18,12</td>
<td></td>
</tr>
<tr>
<td>GL113</td>
<td>LB</td>
<td>4,03</td>
<td></td>
</tr>
<tr>
<td>GL114</td>
<td>LB</td>
<td>8,32</td>
<td></td>
</tr>
<tr>
<td>GL115</td>
<td>LB</td>
<td>4,21</td>
<td></td>
</tr>
<tr>
<td>GL116</td>
<td>LB</td>
<td>1,71</td>
<td></td>
</tr>
<tr>
<td>GL117</td>
<td>LB</td>
<td>2,36</td>
<td></td>
</tr>
<tr>
<td>GL118</td>
<td>LB</td>
<td>3,24</td>
<td></td>
</tr>
<tr>
<td>GL122</td>
<td>LB</td>
<td>12,73</td>
<td></td>
</tr>
<tr>
<td>GL123</td>
<td>LB</td>
<td>19,61</td>
<td></td>
</tr>
<tr>
<td>GL124</td>
<td>LB</td>
<td>2,03</td>
<td></td>
</tr>
<tr>
<td>GL125</td>
<td>LB</td>
<td>7,46</td>
<td></td>
</tr>
<tr>
<td>GL126</td>
<td>LB</td>
<td>50,83</td>
<td></td>
</tr>
<tr>
<td>GL127</td>
<td>LB</td>
<td>2,99</td>
<td></td>
</tr>
<tr>
<td>GL128</td>
<td>LB</td>
<td>3,04</td>
<td></td>
</tr>
<tr>
<td>GL129</td>
<td>LB</td>
<td>38,95</td>
<td></td>
</tr>
<tr>
<td>GL130</td>
<td>LB</td>
<td>4,33</td>
<td></td>
</tr>
<tr>
<td>GL131</td>
<td>LB</td>
<td>7,82</td>
<td></td>
</tr>
<tr>
<td>GL132</td>
<td>LB</td>
<td>1,31</td>
<td></td>
</tr>
<tr>
<td>GL133</td>
<td>LB</td>
<td>9,91</td>
<td></td>
</tr>
<tr>
<td>GL134</td>
<td>LB</td>
<td>5,36</td>
<td></td>
</tr>
<tr>
<td>GL135</td>
<td>LB</td>
<td>8,81</td>
<td></td>
</tr>
<tr>
<td>GL136</td>
<td>LB</td>
<td>3,98</td>
<td></td>
</tr>
<tr>
<td>GL137</td>
<td>LB</td>
<td>6,21</td>
<td></td>
</tr>
<tr>
<td>GL138</td>
<td>LB</td>
<td>1,04</td>
<td></td>
</tr>
<tr>
<td>GL139</td>
<td>LB</td>
<td>7,45</td>
<td></td>
</tr>
<tr>
<td>GL140</td>
<td>LB</td>
<td>11,05</td>
<td></td>
</tr>
<tr>
<td>GL141</td>
<td>LB</td>
<td>5,42</td>
<td></td>
</tr>
<tr>
<td>GL142</td>
<td>LB</td>
<td>4,07</td>
<td></td>
</tr>
<tr>
<td>GL144a</td>
<td>LB</td>
<td>6,36</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>58</td>
<td>81</td>
<td>141</td>
<td>274</td>
<td>359</td>
</tr>
<tr>
<td>36</td>
<td>60</td>
<td>98</td>
<td>156</td>
<td>321</td>
<td>419</td>
</tr>
<tr>
<td>45</td>
<td>63</td>
<td>122</td>
<td>172</td>
<td>367</td>
<td>497</td>
</tr>
<tr>
<td>37</td>
<td>52</td>
<td>101</td>
<td>159</td>
<td>329</td>
<td>430</td>
</tr>
<tr>
<td>30</td>
<td>42</td>
<td>82</td>
<td>142</td>
<td>278</td>
<td>364</td>
</tr>
<tr>
<td>36</td>
<td>50</td>
<td>98</td>
<td>156</td>
<td>320</td>
<td>418</td>
</tr>
<tr>
<td>28</td>
<td>40</td>
<td>55</td>
<td>137</td>
<td>266</td>
<td>348</td>
</tr>
<tr>
<td>18</td>
<td>26</td>
<td>51</td>
<td>104</td>
<td>189</td>
<td>248</td>
</tr>
<tr>
<td>29</td>
<td>40</td>
<td>80</td>
<td>139</td>
<td>271</td>
<td>355</td>
</tr>
<tr>
<td>23</td>
<td>32</td>
<td>64</td>
<td>121</td>
<td>228</td>
<td>299</td>
</tr>
<tr>
<td>29</td>
<td>40</td>
<td>79</td>
<td>138</td>
<td>268</td>
<td>351</td>
</tr>
<tr>
<td>38</td>
<td>53</td>
<td>103</td>
<td>160</td>
<td>333</td>
<td>435</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>152</td>
<td>308</td>
<td>403</td>
</tr>
<tr>
<td>34</td>
<td>48</td>
<td>94</td>
<td>148</td>
<td>296</td>
<td>387</td>
</tr>
<tr>
<td>32</td>
<td>45</td>
<td>89</td>
<td>145</td>
<td>286</td>
<td>374</td>
</tr>
<tr>
<td>31</td>
<td>43</td>
<td>85</td>
<td>111</td>
<td>206</td>
<td>270</td>
</tr>
<tr>
<td>20</td>
<td>28</td>
<td>56</td>
<td>102</td>
<td>185</td>
<td>244</td>
</tr>
<tr>
<td>18</td>
<td>25</td>
<td>50</td>
<td>156</td>
<td>320</td>
<td>418</td>
</tr>
<tr>
<td>24</td>
<td>34</td>
<td>66</td>
<td>124</td>
<td>234</td>
<td>306</td>
</tr>
<tr>
<td>13</td>
<td>19</td>
<td>37</td>
<td>83</td>
<td>147</td>
<td>194</td>
</tr>
<tr>
<td>32</td>
<td>44</td>
<td>87</td>
<td>147</td>
<td>291</td>
<td>381</td>
</tr>
<tr>
<td>32</td>
<td>44</td>
<td>87</td>
<td>146</td>
<td>290</td>
<td>380</td>
</tr>
<tr>
<td>14</td>
<td>20</td>
<td>40</td>
<td>88</td>
<td>157</td>
<td>207</td>
</tr>
<tr>
<td>28</td>
<td>40</td>
<td>78</td>
<td>138</td>
<td>267</td>
<td>349</td>
</tr>
<tr>
<td>24</td>
<td>33</td>
<td>65</td>
<td>123</td>
<td>231</td>
<td>303</td>
</tr>
<tr>
<td>41</td>
<td>57</td>
<td>112</td>
<td>166</td>
<td>355</td>
<td>464</td>
</tr>
<tr>
<td>22</td>
<td>31</td>
<td>61</td>
<td>117</td>
<td>218</td>
<td>286</td>
</tr>
<tr>
<td>26</td>
<td>37</td>
<td>73</td>
<td>132</td>
<td>253</td>
<td>332</td>
</tr>
<tr>
<td>23</td>
<td>32</td>
<td>63</td>
<td>120</td>
<td>225</td>
<td>295</td>
</tr>
<tr>
<td>29</td>
<td>41</td>
<td>80</td>
<td>140</td>
<td>272</td>
<td>356</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>129</td>
<td>244</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>170</td>
<td>365</td>
<td>490</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>124</td>
<td>234</td>
<td>307</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>115</td>
<td>213</td>
<td>279</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>132</td>
<td>252</td>
<td>331</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>139</td>
<td>270</td>
<td>354</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>128</td>
<td>243</td>
<td>318</td>
</tr>
</tbody>
</table>

<p>| 1,72 | 1,27 | 0,93 | 0,69 |
| 1,43 | 1,06 | 0,78 | 0,58 |
| 1,21 | 0,87 | 0,64 | 0,47 |
| 1,39 | 1,03 | 0,76 | 0,56 |
| 1,69 | 1,25 | 0,92 | 0,68 |
| 1,43 | 1,06 | 0,78 | 0,58 |
| 1,78 | 1,31 | 0,97 | 0,71 |
| 2,67 | 1,95 | 1,43 | 1,05 |
| 1,74 | 1,28 | 0,95 | 0,7 |
| 2,14 | 1,57 | 1,15 | 0,85 |
| 1,77 | 1,3 | 0,96 | 0,7 |
| 1,37 | 1,01 | 0,75 | 0,55 |
| 1,5 | 1,11 | 0,82 | 0,6 |
| 1,57 | 1,16 | 0,85 | 0,63 |
| 1,64 | 1,21 | 0,89 | 0,66 |
| 2,42 | 1,77 | 1,3 | 0,95 |
| 2,73 | 2 | 1,46 | 1,07 |
| 1,43 | 1,06 | 0,78 | 0,58 |
| 2,08 | 1,52 | 1,12 | 0,82 |
| 3,58 | 2 | 1,9 | 1,38 |
| 1,6 | 1,18 | 0,87 | 0,64 |
| 1,61 | 1,19 | 0,87 | 0,64 |
| 3,32 | 2,42 | 1,76 | 1,29 |
| 1,78 | 1,31 | 0,96 | 0,71 |
| 2,1 | 1,54 | 1,13 | 0,83 |
| 1,27 | 0,94 | 0,69 | 0,51 |
| 2,25 | 1,65 | 1,21 | 0,89 |
| 1,89 | 1,39 | 1,02 | 0,75 |
| 2,18 | 1,6 | 1,17 | 0,86 |
| 1,74 | 1,28 | 0,94 | 0,69 |
| 1,97 | 1,45 | 1,06 | 0,78 |
| 1,22 | 0,88 | 0,65 | 0,48 |
| 2,08 | 1,52 | 1,12 | 0,82 |
| 2,32 | 1,7 | 1,25 | 0,91 |
| 1,9 | 1,39 | 1,03 | 0,75 |
| 1,75 | 1,29 | 0,95 | 0,7 |
| 1,98 | 1,46 | 1,07 | 0,79 |</p>
<table>
<thead>
<tr>
<th>GL144b</th>
<th>LB</th>
<th>4.66</th>
</tr>
</thead>
<tbody>
<tr>
<td>GL146</td>
<td>LB</td>
<td>8.44</td>
</tr>
<tr>
<td>GL147a</td>
<td>LB</td>
<td>3.1</td>
</tr>
<tr>
<td>GL147b</td>
<td>LB</td>
<td>9.4</td>
</tr>
<tr>
<td>GL147c</td>
<td>LB</td>
<td>6.1</td>
</tr>
<tr>
<td>GL148</td>
<td>LB</td>
<td>3.49</td>
</tr>
<tr>
<td>GL149</td>
<td>LB</td>
<td>2.38</td>
</tr>
<tr>
<td>GL150</td>
<td>LB</td>
<td>4.24</td>
</tr>
<tr>
<td>GL152</td>
<td>LB</td>
<td>5.17</td>
</tr>
<tr>
<td>GL162</td>
<td>LB</td>
<td>6.98</td>
</tr>
<tr>
<td>GL167</td>
<td>LB</td>
<td>7.52</td>
</tr>
<tr>
<td>GL168</td>
<td>LB</td>
<td>2.25</td>
</tr>
<tr>
<td>GL170</td>
<td>LB</td>
<td>4.17</td>
</tr>
<tr>
<td>B1L34</td>
<td>RM</td>
<td>3.01</td>
</tr>
<tr>
<td>B1L35</td>
<td>RM</td>
<td>4.81</td>
</tr>
<tr>
<td>B1L36</td>
<td>RM</td>
<td>3.74</td>
</tr>
<tr>
<td>CL1</td>
<td>RM</td>
<td>2.52</td>
</tr>
<tr>
<td>CL10</td>
<td>RM</td>
<td>5.37</td>
</tr>
<tr>
<td>CL12</td>
<td>RM</td>
<td>16.85</td>
</tr>
<tr>
<td>CL13</td>
<td>RM</td>
<td>13.27</td>
</tr>
<tr>
<td>CL14</td>
<td>RM</td>
<td>8.06</td>
</tr>
<tr>
<td>CL15</td>
<td>RM</td>
<td>18.35</td>
</tr>
<tr>
<td>CL17</td>
<td>RM</td>
<td>1.03</td>
</tr>
<tr>
<td>CL18</td>
<td>RM</td>
<td>3.35</td>
</tr>
<tr>
<td>CL19</td>
<td>RM</td>
<td>2.07</td>
</tr>
<tr>
<td>CL2</td>
<td>RM</td>
<td>9.79</td>
</tr>
<tr>
<td>CL20</td>
<td>RM</td>
<td>1.99</td>
</tr>
<tr>
<td>CL21</td>
<td>RM</td>
<td>2.15</td>
</tr>
<tr>
<td>CL22</td>
<td>RM</td>
<td>0.69</td>
</tr>
<tr>
<td>CL23</td>
<td>RM</td>
<td>2.25</td>
</tr>
<tr>
<td>CL25</td>
<td>RM</td>
<td>3.07</td>
</tr>
<tr>
<td>CL26</td>
<td>RM</td>
<td>3.04</td>
</tr>
<tr>
<td>CL27</td>
<td>RM</td>
<td>1.75</td>
</tr>
<tr>
<td>CL28</td>
<td>RM</td>
<td>2.98</td>
</tr>
<tr>
<td>CL29</td>
<td>RM</td>
<td>3.72</td>
</tr>
<tr>
<td>CL3</td>
<td>RM</td>
<td>16.85</td>
</tr>
<tr>
<td>CL30</td>
<td>RM</td>
<td>1.58</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GL149b</td>
<td>GB</td>
<td>136</td>
</tr>
<tr>
<td>GL146</td>
<td>LB</td>
<td>200</td>
</tr>
<tr>
<td>GL150</td>
<td>LB</td>
<td>262</td>
</tr>
<tr>
<td>GL147</td>
<td>LB</td>
<td>343</td>
</tr>
<tr>
<td>GL147c</td>
<td>LB</td>
<td>298</td>
</tr>
<tr>
<td>GL148</td>
<td>LB</td>
<td>378</td>
</tr>
<tr>
<td>GL149</td>
<td>LB</td>
<td>378</td>
</tr>
<tr>
<td>GL150</td>
<td>LB</td>
<td>378</td>
</tr>
<tr>
<td>GL152</td>
<td>LB</td>
<td>378</td>
</tr>
<tr>
<td>GL162</td>
<td>LB</td>
<td>378</td>
</tr>
<tr>
<td>GL167</td>
<td>LB</td>
<td>378</td>
</tr>
<tr>
<td>GL168</td>
<td>LB</td>
<td>378</td>
</tr>
<tr>
<td>GL170</td>
<td>LB</td>
<td>378</td>
</tr>
<tr>
<td>B1L34</td>
<td>RM</td>
<td>378</td>
</tr>
<tr>
<td>B1L35</td>
<td>RM</td>
<td>378</td>
</tr>
<tr>
<td>B1L36</td>
<td>RM</td>
<td>378</td>
</tr>
<tr>
<td>CL1</td>
<td>RM</td>
<td>378</td>
</tr>
<tr>
<td>CL10</td>
<td>RM</td>
<td>378</td>
</tr>
<tr>
<td>CL12</td>
<td>RM</td>
<td>378</td>
</tr>
<tr>
<td>CL13</td>
<td>RM</td>
<td>378</td>
</tr>
<tr>
<td>CL14</td>
<td>RM</td>
<td>378</td>
</tr>
<tr>
<td>CL15</td>
<td>RM</td>
<td>378</td>
</tr>
<tr>
<td>CL17</td>
<td>RM</td>
<td>378</td>
</tr>
<tr>
<td>CL18</td>
<td>RM</td>
<td>378</td>
</tr>
<tr>
<td>CL19</td>
<td>RM</td>
<td>378</td>
</tr>
<tr>
<td>CL2</td>
<td>RM</td>
<td>378</td>
</tr>
<tr>
<td>CL20</td>
<td>RM</td>
<td>378</td>
</tr>
<tr>
<td>CL21</td>
<td>RM</td>
<td>378</td>
</tr>
<tr>
<td>CL22</td>
<td>RM</td>
<td>378</td>
</tr>
<tr>
<td>CL23</td>
<td>RM</td>
<td>378</td>
</tr>
<tr>
<td>CL25</td>
<td>RM</td>
<td>378</td>
</tr>
<tr>
<td>CL26</td>
<td>RM</td>
<td>378</td>
</tr>
<tr>
<td>CL27</td>
<td>RM</td>
<td>378</td>
</tr>
<tr>
<td>CL28</td>
<td>RM</td>
<td>378</td>
</tr>
<tr>
<td>CL29</td>
<td>RM</td>
<td>378</td>
</tr>
<tr>
<td>CL3</td>
<td>RM</td>
<td>378</td>
</tr>
<tr>
<td>CL30</td>
<td>RM</td>
<td>378</td>
</tr>
<tr>
<td>CL31</td>
<td>RM</td>
<td>1</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>CL32</td>
<td>RM</td>
<td>2.49</td>
</tr>
<tr>
<td>CL33</td>
<td>RM</td>
<td>1.62</td>
</tr>
<tr>
<td>DL1</td>
<td>RMC</td>
<td>5.5</td>
</tr>
<tr>
<td>DL10</td>
<td>RMC</td>
<td>23.84</td>
</tr>
<tr>
<td>DL104</td>
<td>RMC</td>
<td>12.9</td>
</tr>
<tr>
<td>DL105</td>
<td>RMC</td>
<td>8.6</td>
</tr>
<tr>
<td>DL106</td>
<td>RMC</td>
<td>34.88</td>
</tr>
<tr>
<td>DL107</td>
<td>RMC</td>
<td>16.32</td>
</tr>
<tr>
<td>DL108</td>
<td>RMC</td>
<td>8.63</td>
</tr>
<tr>
<td>DL109</td>
<td>RMC</td>
<td>19.82</td>
</tr>
<tr>
<td>DL112</td>
<td>RMC</td>
<td>11.8</td>
</tr>
<tr>
<td>DL113</td>
<td>RMC</td>
<td>1.63</td>
</tr>
<tr>
<td>DL115</td>
<td>RMC</td>
<td>3.82</td>
</tr>
<tr>
<td>DL116</td>
<td>RMC</td>
<td>4.8</td>
</tr>
<tr>
<td>DL117</td>
<td>RMC</td>
<td>28.2</td>
</tr>
<tr>
<td>DL118</td>
<td>RMC</td>
<td>5.66</td>
</tr>
<tr>
<td>DL119</td>
<td>RMC</td>
<td>14.15</td>
</tr>
<tr>
<td>DL12</td>
<td>RMC</td>
<td>23.53</td>
</tr>
<tr>
<td>DL120</td>
<td>RMC</td>
<td>2.63</td>
</tr>
<tr>
<td>DL121</td>
<td>RMC</td>
<td>9</td>
</tr>
<tr>
<td>DL122</td>
<td>RMC</td>
<td>9.38</td>
</tr>
<tr>
<td>DL123</td>
<td>RMC</td>
<td>11.51</td>
</tr>
<tr>
<td>DL124</td>
<td>RMC</td>
<td>40.81</td>
</tr>
<tr>
<td>DL125</td>
<td>RMC</td>
<td>11.12</td>
</tr>
<tr>
<td>DL126</td>
<td>RMC</td>
<td>9.65</td>
</tr>
<tr>
<td>DL127</td>
<td>RMC</td>
<td>15.03</td>
</tr>
<tr>
<td>DL128</td>
<td>RMC</td>
<td>15.96</td>
</tr>
<tr>
<td>DL129</td>
<td>RMC</td>
<td>4.98</td>
</tr>
<tr>
<td>DL13</td>
<td>RMC</td>
<td>9.88</td>
</tr>
<tr>
<td>DL130</td>
<td>RMC</td>
<td>4.37</td>
</tr>
<tr>
<td>DL14</td>
<td>RMC</td>
<td>8.6</td>
</tr>
<tr>
<td>DL15</td>
<td>RMC</td>
<td>5.59</td>
</tr>
<tr>
<td>DL16</td>
<td>RMC</td>
<td>38.03</td>
</tr>
<tr>
<td>DL17</td>
<td>RMC</td>
<td>11.61</td>
</tr>
<tr>
<td>DL19</td>
<td>RMC</td>
<td>4.6</td>
</tr>
<tr>
<td>DL2</td>
<td>RMC</td>
<td>1.98</td>
</tr>
<tr>
<td>DL22</td>
<td>RMC</td>
<td>22.06</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>DL23</td>
<td>RMC</td>
<td>7.12</td>
</tr>
<tr>
<td>DL24</td>
<td>RMC</td>
<td>7.68</td>
</tr>
<tr>
<td>DL25</td>
<td>RMC</td>
<td>10.87</td>
</tr>
<tr>
<td>DL26</td>
<td>RMC</td>
<td>12.02</td>
</tr>
<tr>
<td>DL27</td>
<td>RMC</td>
<td>16.94</td>
</tr>
<tr>
<td>DL28</td>
<td>RMC</td>
<td>12.77</td>
</tr>
<tr>
<td>DL29</td>
<td>RMC</td>
<td>11.51</td>
</tr>
<tr>
<td>DL30</td>
<td>RMC</td>
<td>1.16</td>
</tr>
<tr>
<td>DL31</td>
<td>RMC</td>
<td>0.65</td>
</tr>
<tr>
<td>DL32</td>
<td>RMC</td>
<td>1.25</td>
</tr>
<tr>
<td>DL33</td>
<td>RMC</td>
<td>0.99</td>
</tr>
<tr>
<td>DL34</td>
<td>RMC</td>
<td>1.07</td>
</tr>
<tr>
<td>DL35</td>
<td>RMC</td>
<td>0.86</td>
</tr>
<tr>
<td>DL36</td>
<td>RMC</td>
<td>4</td>
</tr>
<tr>
<td>DL37</td>
<td>RMC</td>
<td>8</td>
</tr>
<tr>
<td>DL38</td>
<td>RMC</td>
<td>8.42</td>
</tr>
<tr>
<td>DL39</td>
<td>RMC</td>
<td>6.48</td>
</tr>
<tr>
<td>DL40</td>
<td>RMC</td>
<td>11.04</td>
</tr>
<tr>
<td>DL41</td>
<td>RMC</td>
<td>8</td>
</tr>
<tr>
<td>DL42</td>
<td>RMC</td>
<td>30.3</td>
</tr>
<tr>
<td>DL43</td>
<td>RMC</td>
<td>13.25</td>
</tr>
<tr>
<td>DL44</td>
<td>RMC</td>
<td>1.59</td>
</tr>
<tr>
<td>DL45</td>
<td>RMC</td>
<td>1.2</td>
</tr>
<tr>
<td>DL46</td>
<td>RMC</td>
<td>2.84</td>
</tr>
<tr>
<td>DL47</td>
<td>RMC</td>
<td>7</td>
</tr>
<tr>
<td>DL48</td>
<td>RMC</td>
<td>3.01</td>
</tr>
<tr>
<td>DL49</td>
<td>RMC</td>
<td>51.13</td>
</tr>
<tr>
<td>DL50</td>
<td>RMC</td>
<td>67.12</td>
</tr>
<tr>
<td>DL51</td>
<td>RMC</td>
<td>95.22</td>
</tr>
<tr>
<td>DL52</td>
<td>RMC</td>
<td>34.63</td>
</tr>
<tr>
<td>DL53</td>
<td>RMC</td>
<td>67.72</td>
</tr>
<tr>
<td>DL54</td>
<td>RMC</td>
<td>6.86</td>
</tr>
<tr>
<td>DL55</td>
<td>RMC</td>
<td>82.35</td>
</tr>
<tr>
<td>DL56</td>
<td>RMC</td>
<td>32.19</td>
</tr>
<tr>
<td>DL57</td>
<td>RMC</td>
<td>6.92</td>
</tr>
<tr>
<td>DL58</td>
<td>RMC</td>
<td>154.21</td>
</tr>
</tbody>
</table>

<p>| 17 | 24 | 34 | 48 | 99 | 137 | 180 | 237 | 2.83 | 2.06 | 1.51 | 1.1 |
| 24 | 34 | 48 | 67 | 125 | 180 | 236 | 310 | 2.05 | 1.5 | 1.1 | 0.81|
| 24 | 33 | 47 | 66 | 123 | 177 | 232 | 304 | 2.09 | 1.54 | 1.13 | 0.83|
| 21 | 30 | 42 | 59 | 115 | 163 | 214 | 280 | 2.31 | 1.69 | 1.24 | 0.91|
| 21 | 29 | 41 | 57 | 113 | 159 | 208 | 274 | 2.38 | 1.74 | 1.28 | 0.94|
| 19 | 26 | 37 | 52 | 105 | 146 | 192 | 252 | 2.62 | 1.92 | 1.4 | 1.03|
| 20 | 28 | 40 | 56 | 111 | 157 | 205 | 270 | 2.42 | 1.77 | 1.3 | 0.95|
| 21 | 29 | 41 | 58 | 114 | 161 | 211 | 276 | 2.35 | 1.72 | 1.26 | 0.92|
| 43 | 59 | 83 | 116 | 168 | 247 | 362 | 477 | 1.24 | 0.91 | 0.67 | 0.5 |
| 50 | 71 | 99 | 138 | 179 | 259 | 377 | 549 | 1.15 | 0.77 | 0.57 | 0.42|
| 42 | 58 | 81 | 113 | 167 | 245 | 360 | 469 | 1.25 | 0.93 | 0.68 | 0.51|
| 45 | 62 | 87 | 121 | 171 | 250 | 367 | 496 | 1.21 | 0.87 | 0.64 | 0.48|
| 44 | 61 | 85 | 118 | 170 | 248 | 364 | 486 | 1.22 | 0.89 | 0.66 | 0.49|
| 47 | 65 | 91 | 127 | 174 | 253 | 370 | 513 | 1.19 | 0.83 | 0.62 | 0.46|
| 29 | 41 | 57 | 80 | 140 | 208 | 272 | 355 | 1.74 | 1.28 | 0.94 | 0.69|
| 23 | 33 | 46 | 65 | 122 | 175 | 230 | 301 | 2.12 | 1.55 | 1.14 | 0.84|
| 23 | 32 | 45 | 64 | 121 | 173 | 227 | 298 | 2.15 | 1.58 | 1.16 | 0.85|
| 25 | 35 | 49 | 69 | 128 | 185 | 242 | 317 | 2 | 1.47 | 1.08 | 0.79|
| 21 | 30 | 42 | 59 | 115 | 162 | 213 | 279 | 2.32 | 1.7 | 1.25 | 0.91|
| 23 | 33 | 46 | 65 | 122 | 175 | 230 | 301 | 2.12 | 1.55 | 1.14 | 0.84|
| 16 | 22 | 31 | 44 | 93 | 127 | 167 | 220 | 3.09 | 2.25 | 1.64 | 1.2 |
| 20 | 28 | 40 | 56 | 111 | 155 | 204 | 267 | 2.44 | 1.79 | 1.31 | 0.96|
| 39 | 54 | 75 | 105 | 162 | 238 | 339 | 443 | 1.34 | 0.99 | 0.73 | 0.54|
| 42 | 59 | 82 | 115 | 168 | 246 | 361 | 473 | 1.24 | 0.92 | 0.68 | 0.5 |
| 32 | 45 | 63 | 88 | 148 | 222 | 295 | 386 | 1.58 | 1.16 | 0.86 | 0.63|
| 24 | 34 | 48 | 67 | 126 | 181 | 237 | 311 | 2.04 | 1.5 | 1.1 | 0.81|
| 32 | 44 | 62 | 87 | 147 | 220 | 291 | 380 | 1.61 | 1.18 | 0.87 | 0.64|
| 13 | 19 | 26 | 37 | 83 | 112 | 147 | 194 | 3.59 | 2.61 | 1.9 | 1.39|
| 12 | 17 | 24 | 34 | 78 | 104 | 138 | 182 | 3.87 | 2.81 | 2.05 | 1.49|
| 11 | 15 | 22 | 31 | 72 | 96 | 127 | 167 | 4.28 | 3.1 | 2.25 | 1.64|
| 15 | 21 | 30 | 42 | 90 | 123 | 162 | 213 | 3.21 | 2.34 | 1.71 | 1.25|
| 12 | 17 | 24 | 34 | 78 | 104 | 138 | 181 | 3.88 | 2.82 | 2.05 | 1.5 |
| 25 | 34 | 48 | 68 | 126 | 182 | 239 | 313 | 2.03 | 1.49 | 1.09 | 0.8 |
| 11 | 16 | 23 | 32 | 75 | 99 | 131 | 173 | 4.11 | 2.98 | 2.16 | 1.58|
| 15 | 21 | 30 | 43 | 92 | 125 | 164 | 216 | 3.14 | 2.29 | 1.67 | 1.22|
| 24 | 34 | 48 | 68 | 126 | 182 | 238 | 312 | 2.03 | 1.49 | 1.1 | 0.81|
| 9 | 13 | 19 | 27 | 65 | 85 | 113 | 149 | 4.91 | 3.55 | 2.57 | 1.87|
| DL66 | RMC | 41.75 |
| DL67 | RMC | 12.07 |
| DL68 | RMC | 59.66 |
| DL69 | RMC | 53.33 |
| DL7 | RMC | 3.24 |
| DL70 | RMC | 34.15 |
| DL71 | RMC | 20.46 |
| DL72 | RMC | 26.12 |
| DL73 | RMC | 10.47 |
| DL74 | RMC | 38.48 |
| DL75 | RMC | 23.76 |
| DL76 | RMC | 29.24 |
| DL77 | RMC | 20.21 |
| DL78 | RMC | 3.35 |
| DL79 | RMC | 27.41 |
| DL8 | RMC | 24.67 |
| DL81 | RMC | 10.77 |
| DL82 | RMC | 4.82 |
| DL83 | RMC | 21.93 |
| DL84 | RMC | 24.22 |
| DL85 | RMC | 30.8 |
| DL86 | RMC | 1.29 |
| DL87 | RMC | 30.51 |
| DL88 | RMC | 23.59 |
| DL89 | RMC | 11.68 |
| DL90 | RMC | 18.5 |
| DL91 | RMC | 12.9 |
| DL92 | RMC | 46.26 |
| DL93 | RMC | 9.37 |
| EL131|RMC | 48.07 |
| EL132|RMC | 8.16 |
| EL133|RMC | 21.7 |
| EL134|RMC | 22.65 |
| EL135|RMC | 13.8 |
| L140 | RMC | 7.22 |
| HL01 | SN | 0.29 |
| 14 | 20 | 28 | 40 |
| 21 | 29 | 41 | 57 |
| 13 | 18 | 25 | 36 |
| 13 | 18 | 26 | 37 |
| 31 | 43 | 61 | 85 |
| 15 | 21 | 30 | 42 |
| 16 | 23 | 35 | 49 |
| 16 | 23 | 32 | 45 |
| 21 | 30 | 42 | 59 |
| 27 | 38 | 54 | 75 |
| 17 | 24 | 34 | 48 |
| 17 | 23 | 33 | 47 |
| 15 | 22 | 31 | 43 |
| 41 | 57 | 80 | 112 |
| 16 | 22 | 31 | 43 |
| 17 | 24 | 33 | 47 |
| 21 | 29 | 41 | 58 |
| 18 | 25 | 36 | 50 |
| 20 | 28 | 40 | 56 |
| 14 | 19 | 27 | 38 |
| 22 | 31 | 44 | 62 |
| 13 | 19 | 27 | 38 |
| 23 | 33 | 46 | 64 |
| 17 | 24 | 34 | 48 |
| 17 | 24 | 34 | 47 |
| 20 | 28 | 39 | 55 |
| 24 | 34 | 48 | 67 |
| 54 | 90 | 127 | 176 |
| HL02 | SN | 9.57 |
|HL03 | SN | 4.39 |
|HL04 | SN | 7.77 |
|HL05 | SN | 8.77 |
|HL06 | SN | 0.98 |
|HL07 | SN | 0.8 |
|HL07 | SN | 0.79 |
|HL07 | SN | 0.8 |
|HL08 | SN | 0.81 |
|HL09a| SN | 0.58 |
|HL09b| SN | 0.64 |
|HL10 | SN | 1 |
|HL11 | SN | 1 |
|HL12 | SN | 1.46 |
|HL13 | SN | 1 |
|HL14 | SN | 2.5 |
|HL15 | SN | 6.22 |
|HL16 | SN | 6.13 |
|HL17a| SN | 12.27|
|HL17b| SN | 3.5 |
|HL17c| SN | 0.55 |
|HL18 | SN | 3.1 |
|HL19 | SN | 3.03 |
|HL20a| SN | 3 |
|HL20b| SN | 0.61 |
|HL20c| SN | 2.90 |
|HL21 | SN | 5 |
|HL22 | SN | 2.26 |
|HL23 | SN | 3.09 |
|HL24 | SN | 4.89 |
|HL25 | SN | 4 |
|HL26 | SN | 3 |
|HL27 | SN | 3 |
|HL27 | SN | 2.98 |
|HL27 | SN | 2.9 |
|HL28 | SN | 7.9 |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HL55</td>
<td>SN</td>
<td>5,97</td>
<td>26</td>
<td>36</td>
<td>50</td>
<td>71</td>
<td>130</td>
<td>188</td>
<td>247</td>
<td>323</td>
<td>1.95</td>
<td>1.43</td>
<td>1.05</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>HL56</td>
<td>SN</td>
<td>5.84</td>
<td>26</td>
<td>36</td>
<td>51</td>
<td>71</td>
<td>130</td>
<td>189</td>
<td>248</td>
<td>325</td>
<td>1.94</td>
<td>1.42</td>
<td>1.05</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>HL57</td>
<td>SN</td>
<td>9.1</td>
<td>22</td>
<td>32</td>
<td>44</td>
<td>62</td>
<td>119</td>
<td>170</td>
<td>223</td>
<td>292</td>
<td>2.2</td>
<td>1.61</td>
<td>1.18</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td>HL59</td>
<td>SN</td>
<td>4.98</td>
<td>27</td>
<td>38</td>
<td>53</td>
<td>75</td>
<td>134</td>
<td>197</td>
<td>258</td>
<td>337</td>
<td>1.85</td>
<td>1.36</td>
<td>1</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>HL60</td>
<td>SN</td>
<td>8.97</td>
<td>23</td>
<td>32</td>
<td>45</td>
<td>63</td>
<td>120</td>
<td>171</td>
<td>224</td>
<td>293</td>
<td>2.19</td>
<td>1.6</td>
<td>1.18</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>HL61</td>
<td>SN</td>
<td>11.08</td>
<td>21</td>
<td>30</td>
<td>42</td>
<td>59</td>
<td>115</td>
<td>162</td>
<td>213</td>
<td>279</td>
<td>2.32</td>
<td>1.7</td>
<td>1.25</td>
<td>0.91</td>
<td></td>
</tr>
<tr>
<td>HL62</td>
<td>SN</td>
<td>3.47</td>
<td>30</td>
<td>42</td>
<td>59</td>
<td>83</td>
<td>143</td>
<td>215</td>
<td>281</td>
<td>368</td>
<td>1.67</td>
<td>1.23</td>
<td>0.91</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>HL63a</td>
<td>SN</td>
<td>11.02</td>
<td>21</td>
<td>30</td>
<td>42</td>
<td>59</td>
<td>115</td>
<td>162</td>
<td>213</td>
<td>279</td>
<td>2.32</td>
<td>1.7</td>
<td>1.25</td>
<td>0.91</td>
<td></td>
</tr>
<tr>
<td>HL63b</td>
<td>SN</td>
<td>9.18</td>
<td>22</td>
<td>31</td>
<td>44</td>
<td>62</td>
<td>119</td>
<td>170</td>
<td>222</td>
<td>292</td>
<td>2.2</td>
<td>1.61</td>
<td>1.18</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td>HL65</td>
<td>SN</td>
<td>14.3</td>
<td>20</td>
<td>27</td>
<td>39</td>
<td>54</td>
<td>109</td>
<td>152</td>
<td>200</td>
<td>263</td>
<td>2.5</td>
<td>1.83</td>
<td>1.34</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>HL66</td>
<td>SN</td>
<td>5.88</td>
<td>26</td>
<td>36</td>
<td>51</td>
<td>71</td>
<td>130</td>
<td>189</td>
<td>248</td>
<td>324</td>
<td>1.94</td>
<td>1.43</td>
<td>1.05</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>HL67</td>
<td>SN</td>
<td>6.6</td>
<td>25</td>
<td>35</td>
<td>49</td>
<td>69</td>
<td>127</td>
<td>184</td>
<td>241</td>
<td>316</td>
<td>2.01</td>
<td>1.47</td>
<td>1.08</td>
<td>0.79</td>
<td></td>
</tr>
<tr>
<td>HL68</td>
<td>SN</td>
<td>15.27</td>
<td>19</td>
<td>27</td>
<td>38</td>
<td>53</td>
<td>107</td>
<td>150</td>
<td>197</td>
<td>258</td>
<td>2.54</td>
<td>1.86</td>
<td>1.36</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>HL69</td>
<td>SN</td>
<td>2.09</td>
<td>35</td>
<td>50</td>
<td>69</td>
<td>97</td>
<td>155</td>
<td>231</td>
<td>318</td>
<td>415</td>
<td>1.45</td>
<td>1.07</td>
<td>0.79</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td>HL70</td>
<td>SN</td>
<td>4.39</td>
<td>28</td>
<td>39</td>
<td>55</td>
<td>78</td>
<td>137</td>
<td>203</td>
<td>266</td>
<td>348</td>
<td>1.79</td>
<td>1.31</td>
<td>0.97</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td>HL71</td>
<td>SN</td>
<td>7.16</td>
<td>24</td>
<td>34</td>
<td>48</td>
<td>67</td>
<td>125</td>
<td>180</td>
<td>236</td>
<td>309</td>
<td>2.05</td>
<td>1.51</td>
<td>1.11</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>HL73</td>
<td>SN</td>
<td>4.9</td>
<td>27</td>
<td>38</td>
<td>53</td>
<td>75</td>
<td>134</td>
<td>197</td>
<td>258</td>
<td>338</td>
<td>1.84</td>
<td>1.36</td>
<td>1.00</td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td>HL74</td>
<td>SN</td>
<td>11.1</td>
<td>21</td>
<td>29</td>
<td>41</td>
<td>58</td>
<td>114</td>
<td>161</td>
<td>212</td>
<td>269</td>
<td>1.84</td>
<td>1.36</td>
<td>1.00</td>
<td>0.73</td>
<td></td>
</tr>
</tbody>
</table>
Annexe 11 : Etat écologique des plans d’eau – Evaluation hydromorphologique des plans d’eau pour la France hexagonale, la Corse et les départements d’Outre-Mer

L’évaluation de l’état hydromorphologique des plans d’eau se fait grâce à l’indice LHYSMO (code Sandre 1520).

- **Description de l’indice LHYSMO :**

LHYMO indice multi-métriques synthétisant des informations sur l’état des plans d’eau relatives à plusieurs éléments de qualité hydromorphologiques tels que définis par la DCE. Il prend en compte des altérations aussi bien hydrologiques que morphologiques aux différentes échelles spatiales et temporelles de fonctionnement des écosystèmes lacustres.

Cette méthode permet de répondre à plusieurs objectifs :
- Fournir une évaluation quantitative des conditions hydromorphologiques des plans d’eau et de leur altération, qu’il s’agisse de définir leur état écologique dans un contexte réglementaire ou de réaliser des diagnostics environnementaux dans un cadre plus large,
- Identifier les éléments de qualité et les types d’altérations à l’origine d’une dégradation de la qualité hydromorphologique des plans d’eau,
- Anticiper et évaluer l’impact de différents scénarios de gestion/remédiation potentiels sur l’amélioration des conditions hydromorphologiques en simulant les valeurs de certaines métriques.

Ainsi, LHYMO est à la fois un outil d’évaluation de l’état hydromorphologique des plans d’eau, mais aussi un outil de quantification des pressions hydromorphologiques s’exerçant sur un écosystème plan d’eau.

L’indice LHYMO prend en compte 5 des 6 éléments de qualité hydromorphologique en plans d’eau requis dans la DCE, via un total de 15 métriques détaillées dans le tableau ci-dessous :

<table>
<thead>
<tr>
<th>Métriques composant l’indice LYMO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composantes</td>
</tr>
<tr>
<td>Morphologie</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Hydrologie</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
LHYMO fournit un **score en EQR** (ecological quality ratio) **pour chacune des 15 métriques**. Les valeurs des métriques sont ensuite combinées selon la règle de « one-out, all-out » (OOAO) afin d’obtenir le **score final de l’indice, également exprimé en EQR**. Le score final donne une mesure quantitative de l’état hydromorphologique et permet une comparaison directe entre différents plans d’eau.

LHYMO permet ainsi d’attribuer à un plan d’eau une classe d’état traduisant la sévérité des altérations hydromorphologiques :

<table>
<thead>
<tr>
<th>INDICE</th>
<th>CLASSES D’ETAT en EQR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Très bon</td>
<td>Bon</td>
</tr>
<tr>
<td>LHYMO</td>
<td>[1 ; 0,8]</td>
</tr>
</tbody>
</table>

Champs d’application et utilisation réglementaire de LHYMO

LHYMO peut être utilisé sur les plans d’eau de France hexagonale, de Corse et des départements d'Outre-Mer, qu’ils soient naturels, fortement modifiés ou artificiels.

Cependant, conformément à l’arrêté du 25 janvier 2010 modifié relatif aux méthodes et critères d’évaluation de l’état écologique, de l’état chimique et du potentiel écologique des eaux de surface, **son utilisation pour évaluer l’état écologique des plans d’eau n’est obligatoire que sur les plans d’eau naturels**, et dans ce cas, **seule la limite entre les classes d’état « très bon » et « bon » est utilisée**.

Pour l’utilisation de LHYMO comme outil d’évaluation des pressions hydromorphologiques s’exerçant sur un plan d’eau naturel, modifié ou artificiel, l’ensemble des limites de classes indiquées dans le tableau ci-dessus peuvent être utilisées à des fins de quantification des pressions, et de comparaison entre différents plans d’eau.

Limites de l’outil :

Les limites de l’indice LHYMO sont les suivantes :

- **Disponibilité des données** : Certains données ne proviennent pas d’une base de données ou d’un jeu de données national de référence et doivent donc être collectées au cas par cas. Par ailleurs, certaines des bases de données mobilisées sont toujours en cours de complétion (cas des données issues des protocoles dits « ALBER » et « CHARLI »). En l’absence de ces données hydromorphologiques, l’indice ne peut être calculé.

- **Élément de qualité manquant** : l’élément de qualité hydromorphologique relatif aux variation de la profondeur non pris en compte en raison de l’absence de données adaptées disponibles à l’échelle nationale

- **Lien avec la biologie** : si les relations de pression/impact sur la biologie des altérations évaluées sont bien identifiées et ont pu être mises en évidence, celle-ci restent néanmoins à quantifier.
Guide d’utilisation et mise à disposition des résultats :

L’indice LHYMo est décrit plus en détails dans le document de référence suivant :

Le score LHYMO des plans d’eau DCE peut être consulté sur la plateforme « Data Ecla » du pôle Ecla : http://geo.ecla.inrae.fr/maps/acceuil-map#layers
Afin de visualiser les résultats, il faut ajouter la couche « Indice LHYMO » (Données DCE (suivis réglementaires) > Hydromorphologie > Indice LHYMO). Les données peuvent ensuite être visualisées sous forme de diagramme de Kiviat et/ou téléchargées.
Annexe 12 : Prise en compte de la variabilité spatiale et règles d’extrapolation spatiale

La présente annexe rappelle les principes généraux et les règles à appliquer pour évaluer l’état écologique de l’ensemble des masses d’eau, tels que définis à l’annexe 10 de l’arrêté évaluation. Ils sont à décliner par bassin, au regard de leurs spécificités (contexte géographique, usages, etc.) et des outils disponibles.

Les principes énoncés ci-dessous peuvent se combiner. Ils ne sont pas exclusifs l’un de l’autre et s’appliquent selon la disponibilité des données et des outils, l’objectif étant d’aboutir à l’évaluation la plus fine possible de l’état écologique d’une masse d’eau, en exploitant au mieux l’ensemble des données disponibles.

Il existe deux types de données exploitables :
- les données milieux : il peut s’agir des données des compartiments biologiques (invertébrés benthiques, diatomées, poissons, phytoplancton, etc.), des données physico-chimiques ou chimiques (concentration en oxygène, en phosphore, etc.);
- les données dites de pression : il peut s’agir par exemple de rejets d’un site industriel ou d’un obstacle de type barrage (voir les exemples de typologie des pressions, proposés au point 2.iii de la présente annexe).

Un niveau de confiance sera attribué à l’état écologique évalué pour chaque masse d’eau, il dépendra des principes explicités en annexe 10 de l’arrêté évaluation.

1. Evaluation de l’état écologique des masses d’eau suivies directement

Lorsqu’une masse d’eau est munie d’un ou plusieurs sites de suivi représentatifs de l’état de la masse d’eau, la classe d’état écologique de la masse d’eau est déterminée par la classe d’état la plus basse de ces sites. Ce sont les seuls cas pour lesquels il est envisageable de disposer de toutes les données milieux pertinentes pour l’évaluation de l’état écologique.

Par ailleurs, les sites localisés sur une masse d’eau située en amont ou en aval d’une masse d’eau donnée peuvent être utilisés pour établir l’état de cette dernière, dès lors qu’ils sont considérés comme représentatifs de son état.

Dans le cas d’une masse d’eau étendue soumise à des pressions importantes de nature différente ou à plusieurs pressions ponctuelles distantes, plusieurs sites de suivi peuvent être nécessaires pour assurer la représentativité de l’état de la masse d’eau.

36 Les critères de la typologie nationale des cours d’eau sont fondés sur la régionalisation des écosystèmes aquatiques par hydro-écorégions (selon des critères de relief, de géologie et de climat du bassin versant) croisée avec des classes de taille de cours d’eau. Ils sont précisés dans l’arrêté du 12 janvier 2010 relatif aux méthodes et aux critères à mettre en œuvre pour délimiter et classer les masses d’eau et dresser l’état des lieux, prévu à l’article R 212-5 du code de l’environnement.
Ces données fournissent une évaluation en dur de l’état de la masse d’eau, sous réserve toutefois de s’assurer que les résultats de la surveillance sont basés sur des chroniques de données suffisamment représentatives de l’état de la masse d’eau (représentativité du site vis-à-vis de la masse d’eau et des pressions qui s’y exercent, volume de données, éléments de qualité disponibles, etc.). À défaut, il conviendra de tenir compte également du dire d’expert et des informations disponibles sur les pressions et leurs incidences pour statuer sur l’état de la masse d’eau.

2. **Evaluation de l’état écologique des masses d’eau non suivies directement**

Dans le cas de masses d’eau ne disposant pas de tels sites représentatifs, l’évaluation de l’état écologique nécessite de recourir au croisement des données de pressions avec les données milieux disponibles ainsi que des données et modèles d’extrapolation spatiale.

 i. **Utilisation d’outils de modélisation**

Il est en particulier possible d’estimer l’état des éléments ou paramètres physico-chimiques soutenant la biologie (macropolluants) par l’utilisation d’un outil de modélisation mécanique/déterministe reconnu et validé.

D’autres modèles d’extrapolation spatiale peuvent être utilisés (outil d’aide à l’extrapolation spatiale d’IRSTEA pour la biologie des cours d’eau, certains outils nationaux identifiés dans le recueil de méthodologies de caractérisation des pressions permettant d’identifier une dégradation quantifiable sur les paramètres de l’état DCE, outils de modélisation des bassins), à condition qu’ils soient reconnus et validés. Les résultats issus de modèles sont à considérer avec précaution et nécessiteront en tout état de cause une validation des résultats par expertise et confrontation avec la connaissance des pressions et de leurs incidences.

Il est à noter que les outils de modélisation ne sont généralement pas conçus pour prendre en compte toutes les pressions. Il est donc nécessaire de croiser les données issues de ces modèles avec les données disponibles relatives à l’ensemble des types de pressions, en particulier relatives aux pollutions, ponctuelles et diffuses, et aux altérations hydromorphologiques.

 ii. **Regroupement de masses d’eau dans des contextes similaires**

C’est le cas des masses d’eau non suivies directement mais qui font partie d’un groupe homogène de masses d’eau présentant un contexte similaire du point de vue de la typologie et des pressions qui s’y exercent. Un échantillon de masses d’eau est suivi directement. Contrairement aux deux premiers cas, l’état de chacune des masses d’eau n’est pas directement évalué avec des données milieux, mais il est estimé, par assimilation, à partir de l’état obtenu avec des données milieux sur des masses d’eau situées dans un contexte similaire.

> L’état écologique de chaque masse d’eau suivie directement dans le groupe est évalué selon les principes énoncés dans le présent guide. La proportion de masses d’eau dans chaque classe d’état écologique est calculée. L’état écologique de l’ensemble des masses d’eau non suivies du groupe homogène pourra être déterminé par la classe d’état écologique dominante, tout en tenant compte des informations disponibles par ailleurs, par exemple en matière de pressions.

Exemple : en considérant un groupe homogène composé de 100 de masses d’eau :
- suivi direct de 50 masses d’eau et évaluation de l’état de ces 50 masses d’eau.
- sur ces 50 masses d’eau : 10 % en très bon état, 20 % en bon état et 70 % en état moyen.
- En l’absence d’autres informations par exemple sur les pressions, l’état attribué aux masses d’eau non suivies est moyen.
On pourra également estimer l’état écologique de masses d’eau à partir des connaissances des forces motrices et de l’état d’autres masses d’eau dans des contextes similaires en s’appuyant sur des modèles statistiques d’extrapolation spatiale (modèles reliant les indices biologiques aux forces motrices - IBGN et occupation du sol par exemple).

iii. Utilisation de données pression

En l’absence de données milieux suffisantes pour attribuer un état à une masse d’eau sur la base de données milieux et dans le cas où il existe des données pressions suffisamment fiables pour estimer le(s) type(s) de pressions qui s’exercent sur la masse d’eau, l’état écologique peut être évalué sur la base des données pressions.

Les données pressions à prendre en compte sont notamment celles utilisées pour la mise à jour des états des lieux et l’élaboration des SDAGE et.

Pour suivre cette démarche, les pressions doivent être caractérisées par grand type, suivant leur nature ou leur origine. A titre indicatif, les typologies présentées ci-dessous pourront être utilisées :

Exemple 1 :
- pression de pollution d’origine domestique ou industrielle (dominante matière organiques et oxydables, ou toxiques hors pesticides) ;
- pression de pollution d’origine agricole ;
- pression de nature hydrologique ou morphologique.

Exemple 2 :
- pression de pollution ponctuelle (dominante matière organiques et oxydables),
- pression de pollution diffuse (dominante agricole ou ponctuelle dispersée, hors pesticides) ;
- pression de pollution par les pesticides :
- pression (hydro)morphologique ;
- pression quantitative (prélèvements, dérivations, transferts …).

La relation pression-état est appréciée en fonction du nombre de types de pressions identifiés sur la masse d’eau et le cas échéant de leur intensité, en suivant les principes énoncés ci-dessous :

- un état écologique très bon ou bon peut être attribué à une masse d’eau à la condition qu’aucune pression significative n’ait été identifiée sur cette masse d’eau ;
- un état écologique médiocre ou mauvais sera attribué à une masse d’eau soumise :
 - soit à tous ou presque tous les types de pressions possibles,
 - soit à au moins une pression identifiée comme forte ou très forte ;
- un état écologique moyen sera attribué dans les autres cas.

Le tableau présenté ci-dessous illustre l’attribution d’un état écologique sur la base du nombre de types de pressions s’exerçant sur une masse d’eau en utilisant la typologie de l’exemple 2 et sans prendre en compte l’intensité des pressions.

<table>
<thead>
<tr>
<th>Nombre de types de pressions s’exerçant sur la ME</th>
<th>État écologique proposé</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Très bon ou Bon</td>
</tr>
<tr>
<td>1 & 2</td>
<td>Moyen*</td>
</tr>
<tr>
<td>3</td>
<td>Moyen*</td>
</tr>
<tr>
<td>4</td>
<td>Moyen*</td>
</tr>
<tr>
<td>5 & 6</td>
<td>Médiocre ou Mauvais*</td>
</tr>
</tbody>
</table>

L’intensité de la pression peut évidemment conduire à adapter cette proposition d’attribution d’un état écologique
3. *Evaluation de l’état écologique des masses d’eau pour lesquelles il n’y a aucune information*

⇒ L’information est insuffisante pour attribuer un état écologique à la masse d’eau.
Annexe 13 : Modalités d’attribution d’un niveau de confiance à l’état écologique évalué d’une masse d’eau – cours d’eau ou plan d’eau

L’objet de la présente annexe est de définir les principes généraux applicables pour l’attribution d’un niveau de confiance à l’état écologique évalué pour une masse d’eau, selon les règles énoncées dans l’annexe 11 de l’arrêté évaluation.

Ils sont résumés dans l’arbre de décision présenté ci-après.

Le niveau de confiance est déterminé globalement pour l’état écologique attribué à une masse d’eau, tout élément de qualité confondu et non, élément de qualité par élément de qualité.

Trois niveaux de confiance sont possibles : 3 (élevé), 2 (moyen), 1 (faible).

L’état écologique évalué pour une masse d’eau peut être le résultat de la combinaison de différents types et niveaux d’informations (données milieux, données pression, données de contexte similaire). Le niveau de confiance attribué est celui considéré comme le plus pertinent au regard des informations utilisées pour l’évaluation.

Les éléments de qualité pertinents de la masse d’eau sont ceux précisés dans la circulaire DCE 2006/16 relative à la constitution et à la mise en œuvre du programme de surveillance pour les eaux douces de surface, dans la mesure de ce qui est indiqué dans le présent guide.

La disponibilité des éléments de qualité les plus sensibles est à analyser au regard des pressions qui sont connues comme s’exerçant ou susceptibles de s’exercer sur la masse d’eau concernée. On pourra se référer aux annexes de l’arrêté surveillance du 25 janvier 2010 modifié comme cadre d’analyse des éléments les plus sensibles en fonction du type de pression.

La robustesse des données milieux peut s’analyser au regard des critères suivants :

S’il s’agit de données obtenues directement :

1. Chronique des données utilisées pour évaluer l’état écologique
La règle est d’utiliser l’ensemble des données disponibles pour évaluer l’état écologique. Plus la chronique de données utilisées est importante, plus le niveau de confiance de l’état évalué d’une masse d’eau est élevé 37. Les chroniques de données disponibles issues des réseaux DCE sont désormais généralement plus longues que les 3 ou 6 ans requis pour évaluer l’état d’une masse d’eau cours d’eau ou plan d’eau. Ces données doivent être utilisées systématiquement pour attribuer un niveau de confiance ou pour vérifier une tendance d’évolution ou asseoir un avis d’expert sur des données en limite d’application.

Indépendamment des données aberrantes qui peuvent être observées ponctuellement (et à exclure pour l’évaluation de l’état écologique), des conditions climatiques exceptionnelles sur une période donnée (une année par exemple) peuvent conduire à écarter des données atypiques de la chronique à prendre en compte pour l’évaluation de l’état écologique. La chronique de données étant alors plus réduite cela peut conduire à diminuer le niveau de confiance de l’état écologique évalué.

37 Dans l’attribution du niveau de confiance, on pourra tenir compte de l’éventuelle antériorité de données, au-delà de celles requises sur les 2 ou 6 ans pour évaluer l’état d’une masse d’eau cours d’eau ou plan d’eau.
2. Cohérence des indications fournies par les compartiments biologiques et la physico- chimie
La cohérence des indications fournies par la biologie et la physico-chimie est un facteur permettant d’augmenter le niveau de confiance de l’état écologique évalué.

3. Niveau d’incertitude associé à la méthode d’évaluation de l’élément de qualité déclassant déterminant l’état écologique de la masse d’eau
Plus ce niveau d’incertitude est faible, plus le niveau de confiance de l’état écologique évalué est élevé.

S’il s’agit de données issues de modélisation :

1. Domaine de validité du modèle : plus la situation simulée est proche des limites de validité du modèle, moins la robustesse sera élevée. La robustesse sera au contraire maximale dès lors que la simulation sera clairement dans le domaine de validité du modèle ;
2. Situation atypique ou exceptionnelle : les modèles permettent de contrôler les conditions hydro-climatiques simulées. Lorsque ces conditions sont atypiques ou représentent clairement une situation exceptionnelle, la robustesse des résultats sera considérée comme faible ;

Cohérence état / pressions
La cohérence entre l’état évalué à partir des données milieux et les données pressions est un facteur permettant d’augmenter le niveau de confiance de l’état écologique évalué. A l’inverse, une analyse plus poussée est nécessaire en cas d’incohérence constatée en première analyse pour s’assurer de la robustesse des diagnostics (état, incidences des pressions) avant de statuer sur l’état écologique de la masse d’eau : toutes les pressions connues ont-elles été prises en compte et convenablement évaluées ? Les référentiels de l’évaluation ont-ils été convenablement utilisés ? Le site de surveillance est-il bien représentatif de l’état de la masse d’eau dans son ensemble ?

Comme indiqué en annexe 11 ci-avant, si les chroniques de données disponibles ne sont pas suffisamment représentatives de l’état de la masse d’eau dans son ensemble, il conviendra de tenir compte également du dire d’expert et des informations disponibles sur les pressions et leurs incidences pour statuer sur l’état de la masse d’eau.

38 Point 1. Evaluation de l’état écologique des masses d’eau suivies directement
39 Représentativité du site vis-à-vis de la masse d’eau et des pressions qui s’y exercent, volume de données, éléments de qualité disponibles, etc.
Arbre de décision pour l’attribution d’un niveau de confiance à l’état écologique évalué pour une masse d’eau appartenant à un type donné

Etat écologique évalué à partir de données milieux
Données obtenues directement ou avec des outils de modélisation (physico-chimie)

Possibilité d’associer la masse d’eau à une ou des masses d’eau suivies directement et situées dans un contexte similaire du point de vue de la typologie et des pressions exercées ?

Propension de masses d’eau déterminant l’état dans le groupe des masses d’eau suivies ?

100-80% 80-50% < 50%

Plus de 80 % du groupe est soit au moins en bon état, soit inférieur au bon état

Disponibilité des données milieux pour les éléments de qualité pertinents de la masse d’eau ?

Disponibilité des données « milieux » pour les éléments de qualité les plus sensibles ?

Robustesse des données milieux ?

Tous les éléments de qualité pertinents sont disponibles

Tous les éléments de qualité pertinents ne sont pas disponibles

Robustesse des données milieux ?

Disponibilité des données pression représentatives ?

Toutes les données pression représentatives sont disponibles

Toutes les données pression représentatives ne sont pas disponibles

Les données pression sont-elles suffisamment éclairantes pour attribuer un état Très bon, Bon, Médiocre ou Mauvais ? *

Information insuffisante pour attribuer un état écologique

* Voir annexe 8 point 4
Annexe 14 : État chimique des cours d’eau et des plans d’eau

Pour les substances numérotées de 34 à 45, les NQE prennent effet à compter du 22 décembre 2018.

Pour les substances numérotées 2, 5, 15, 20, 22, 23 et 28 pour lesquelles des NQE révisées sont fixées à compter du 22 décembre 2015, le bon état chimique doit être atteint avant le 22 décembre 2021.

Pour les substances nouvellement identifiées numérotées de 34 à 45, le bon état chimique doit être atteint avant le 22 décembre 2027.

Les substances indiquées en gras sont les substances dangereuses prioritaires.

MA : moyenne annuelle.
CMA : concentration maximale admissible.
SDP : substance dangereuse prioritaires.
SO : sans objet.
Unités : eau [µg/l] ; biote [µg/kg pf].

Tableau 87 : liste des polluants et normes de qualité environnementales correspondantes

<table>
<thead>
<tr>
<th>No</th>
<th>Code Sandre</th>
<th>Nom de la substance</th>
<th>Numéro CAS (1)</th>
<th>NQE-MA (2) Eaux de surface intérieures (3)</th>
<th>NQE-MA (2) Eaux côtieres et de transition</th>
<th>NQE-CMA (4) Eaux de surface intérieure s (3)</th>
<th>NQE-CMA (4) Eaux côtieres et de transition</th>
<th>NQE Biote (12)</th>
<th>NQE mollusques (17)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>1101</td>
<td>Alachlore</td>
<td>15972-60-8</td>
<td>0,3</td>
<td>0,3</td>
<td>0,7</td>
<td>0,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>1458</td>
<td>Anthracène</td>
<td>120-12-7</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td></td>
<td>173</td>
</tr>
<tr>
<td>(3)</td>
<td>1107</td>
<td>Atrazine</td>
<td>1912-24-9</td>
<td>0,6</td>
<td>0,6</td>
<td>2,0</td>
<td>2,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>1114</td>
<td>Benzène</td>
<td>71-43-2</td>
<td>10</td>
<td>8</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td>7705</td>
<td>Diphényléthérès bromés (5)</td>
<td>32534-81-9</td>
<td>0,14</td>
<td>0,014</td>
<td>0,0085</td>
<td>0,0085</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6)</td>
<td>1388</td>
<td>Cadmium et ses composés (suivant les classes de dureté de l'eau) (6)</td>
<td>7440-43-9</td>
<td>≤ 0,08 (classe 1)</td>
<td>0,08 (classe 2)</td>
<td>0,09 (classe 3)</td>
<td>0,15 (classe 4)</td>
<td>0,25 (classe 5)</td>
<td></td>
</tr>
<tr>
<td>(6 bis)</td>
<td>1276</td>
<td>Tétrachlorure de carbone (7)</td>
<td>56-23-5</td>
<td>12</td>
<td>12</td>
<td>sans objet</td>
<td>sans objet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7)</td>
<td>1955</td>
<td>Chloroalcanes C10-13 (8)</td>
<td>85535-84-8</td>
<td>0,4</td>
<td>0,4</td>
<td>1,4</td>
<td>1,4</td>
<td>16600</td>
<td></td>
</tr>
<tr>
<td>(8)</td>
<td>1464</td>
<td>Chlorfenvinphos</td>
<td>470-90-6</td>
<td>0,1</td>
<td>0,1</td>
<td>0,3</td>
<td>0,3</td>
<td></td>
<td>30,9</td>
</tr>
<tr>
<td>(9)</td>
<td>1083</td>
<td>Chlorpyrifos (éthylchlorpyrifos)</td>
<td>2921-88-2</td>
<td>0,03</td>
<td>0,03</td>
<td>0,1</td>
<td>0,1</td>
<td></td>
<td>10,32</td>
</tr>
<tr>
<td>(9 bis)</td>
<td>5534</td>
<td>Pesticides cyclodiènes: Aldrine (7)</td>
<td>309-00-2</td>
<td>Σ = 0,01</td>
<td>Σ = 0,005</td>
<td>sans objet</td>
<td>sans objet</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

125
<table>
<thead>
<tr>
<th>No</th>
<th>Code Sandre</th>
<th>Nom de la substance</th>
<th>Numéro CAS (1)</th>
<th>NQE-MA (2) Eaux de surface intérieures (3)</th>
<th>NQE-MA (2) Eaux côtieres et de transition</th>
<th>NQE-CMA (4) Eaux de surface intérieures (3)</th>
<th>NQE-CMA (4) Eaux côtieres et de transition</th>
<th>NQE Biote (12)</th>
<th>NQE mollusques (17)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(9) ter</td>
<td>7146</td>
<td>DDT total (7), (9)</td>
<td>sans objet</td>
<td>0,025</td>
<td>0,025</td>
<td>sans objet</td>
<td>sans objet</td>
<td>1282</td>
<td></td>
</tr>
<tr>
<td>(10)</td>
<td>1148</td>
<td>para-para- DDT (7)</td>
<td>50-29-3</td>
<td>0,01</td>
<td>0,01</td>
<td>sans objet</td>
<td>sans objet</td>
<td>1282</td>
<td></td>
</tr>
<tr>
<td>(10)</td>
<td>1161</td>
<td>1,2-dichloroéthane</td>
<td>107-06-2</td>
<td>10</td>
<td>10</td>
<td>sans objet</td>
<td>sans objet</td>
<td>1282</td>
<td></td>
</tr>
<tr>
<td>(11)</td>
<td>1168</td>
<td>Dichlorométhane</td>
<td>75-09-2</td>
<td>20</td>
<td>20</td>
<td>sans objet</td>
<td>sans objet</td>
<td>1282</td>
<td></td>
</tr>
<tr>
<td>(12)</td>
<td>6616</td>
<td>Di(2-ethyl hexyle)-phthalate (DEHP)</td>
<td>117-81-7</td>
<td>1,3</td>
<td>1,3</td>
<td>sans objet</td>
<td>sans objet</td>
<td>3200</td>
<td></td>
</tr>
<tr>
<td>(13)</td>
<td>1177</td>
<td>Diuron</td>
<td>330-54-1</td>
<td>0,2</td>
<td>0,2</td>
<td>1,8</td>
<td>1,8</td>
<td>2920</td>
<td></td>
</tr>
<tr>
<td>(14)</td>
<td>1173</td>
<td>Endosulfan</td>
<td>115-29-7</td>
<td>0,005</td>
<td>0,0005</td>
<td>0,01</td>
<td>0,004</td>
<td>2920</td>
<td></td>
</tr>
<tr>
<td>(15)</td>
<td>1191</td>
<td>Fluoranthène</td>
<td>206-44-0</td>
<td>0,0063</td>
<td>0,0063</td>
<td>0,12</td>
<td>0,12</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>(16)</td>
<td>1199</td>
<td>Hexachlorobenzène</td>
<td>118-74-1</td>
<td>0,05</td>
<td>0,05</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(17)</td>
<td>1652</td>
<td>Hexachlorobutadiène</td>
<td>87-68-3</td>
<td>0,6</td>
<td>0,6</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(18)</td>
<td>5537</td>
<td>Hexachlorocyclohexane</td>
<td>608-73-1</td>
<td>0,02</td>
<td>0,002</td>
<td>0,04</td>
<td>0,02</td>
<td>0,28</td>
<td></td>
</tr>
<tr>
<td>(19)</td>
<td>1208</td>
<td>Isoproturon</td>
<td>34123-59-6</td>
<td>0,3</td>
<td>0,3</td>
<td>1,0</td>
<td>1,0</td>
<td>0,28</td>
<td></td>
</tr>
<tr>
<td>(20)</td>
<td>1382</td>
<td>Plomb et ses composés</td>
<td>7439-92-1</td>
<td>1,2 (13)</td>
<td>1,3</td>
<td>14</td>
<td>14</td>
<td>0,28</td>
<td></td>
</tr>
<tr>
<td>(21)</td>
<td>1387</td>
<td>Mercure et ses composés</td>
<td>7439-97-6</td>
<td>0,07</td>
<td>0,07</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(22)</td>
<td>1517</td>
<td>Naphthalène</td>
<td>91-20-3</td>
<td>2</td>
<td>2</td>
<td>130</td>
<td>130</td>
<td>214</td>
<td></td>
</tr>
<tr>
<td>(23)</td>
<td>1386</td>
<td>Nickel et ses composés</td>
<td>7440-02-0</td>
<td>4 (13)</td>
<td>8,6</td>
<td>34</td>
<td>34</td>
<td>214</td>
<td></td>
</tr>
<tr>
<td>(24)</td>
<td>1958</td>
<td>Nonylphénols (4-nonylphénol)</td>
<td>84852-15-3</td>
<td>0,3</td>
<td>0,3</td>
<td>2,0</td>
<td>2,0</td>
<td>344</td>
<td></td>
</tr>
<tr>
<td>(25)</td>
<td>1959</td>
<td>Octylphénols (4-((1,1',3,3'-tétraméthylbutyl)-phénol)</td>
<td>140-66-9</td>
<td>0,1</td>
<td>0,01</td>
<td>sans objet</td>
<td>sans objet</td>
<td>2,29</td>
<td></td>
</tr>
<tr>
<td>(26)</td>
<td>1888</td>
<td>Pentachlorobenzène</td>
<td>608-93-5</td>
<td>0,007</td>
<td>0,0007</td>
<td>sans objet</td>
<td>sans objet</td>
<td>367</td>
<td></td>
</tr>
<tr>
<td>(27)</td>
<td>1235</td>
<td>Pentachlorophénol</td>
<td>87-86-5</td>
<td>0,4</td>
<td>0,4</td>
<td>1</td>
<td>1</td>
<td>2,29</td>
<td></td>
</tr>
<tr>
<td>(28)</td>
<td></td>
<td>Hydrocarbures aromatiques polycycliques (HAP) (11)</td>
<td>sans objet</td>
<td>sans objet</td>
<td>sans objet</td>
<td>sans objet</td>
<td>sans objet</td>
<td>41,6</td>
<td></td>
</tr>
<tr>
<td>1115</td>
<td>Benzo(a)pyrène</td>
<td>50-32-8</td>
<td>1,7 × 10⁻⁴</td>
<td>1,7 × 10⁻⁴</td>
<td>0,27</td>
<td>0,027</td>
<td>sans objet</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1116</td>
<td>Benzo(b)fluoranthène</td>
<td>205-99-2</td>
<td>voir note 11</td>
<td>voir note 11</td>
<td>0,017</td>
<td>0,017</td>
<td>voir note 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1117</td>
<td>Benzo(k)fluoranthène</td>
<td>207-08-9</td>
<td>voir note 11</td>
<td>voir note 11</td>
<td>0,017</td>
<td>0,017</td>
<td>voir note 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1118</td>
<td>Benzo(g,h,i)perylenè</td>
<td>191-24-2</td>
<td>voir note 11</td>
<td>voir note 11</td>
<td>8,2 × 10⁻⁴</td>
<td>8,2 × 10⁻⁴</td>
<td>voir note 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1204</td>
<td>Indeno(1,2,3-cd-)pyrène</td>
<td>193-39-5</td>
<td>voir note 11</td>
<td>voir note 11</td>
<td>sans objet</td>
<td>sans objet</td>
<td>voir note 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(29)</td>
<td>1263</td>
<td>Simazine</td>
<td>122-34-9</td>
<td>sans objet</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>(29) bis</td>
<td>1272</td>
<td>Tétrachloroéthylène (7)</td>
<td>127-18-4</td>
<td>10</td>
<td>10</td>
<td>sans objet</td>
<td>sans objet</td>
<td>1282</td>
<td></td>
</tr>
<tr>
<td>(29) ter</td>
<td>1286</td>
<td>Trichloroéthylène (7)</td>
<td>79-01-6</td>
<td>10</td>
<td>10</td>
<td>sans objet</td>
<td>sans objet</td>
<td>1282</td>
<td></td>
</tr>
<tr>
<td>(30)</td>
<td>2879</td>
<td>Composés du tributylétain (tributylétain- cation)</td>
<td>36643-28-4</td>
<td>0,0002</td>
<td>0,0002</td>
<td>0,0015</td>
<td>0,0015</td>
<td>100,4</td>
<td></td>
</tr>
<tr>
<td>(31)</td>
<td>1774</td>
<td>Trichlorobenzène</td>
<td>12002-48-1</td>
<td>0,4</td>
<td>0,4</td>
<td>sans objet</td>
<td>sans objet</td>
<td>100,4</td>
<td></td>
</tr>
<tr>
<td>(32)</td>
<td>1135</td>
<td>Trichlorométhane</td>
<td>67-66-3</td>
<td>2,5</td>
<td>2,5</td>
<td>sans objet</td>
<td>sans objet</td>
<td>100,4</td>
<td></td>
</tr>
<tr>
<td>(33)</td>
<td>1289</td>
<td>Trifuraline</td>
<td>1582-09-8</td>
<td>0,03</td>
<td>0,03</td>
<td>sans objet</td>
<td>sans objet</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>(34)</td>
<td>1172</td>
<td>Dicofol</td>
<td>115-32-2</td>
<td>1,3 × 10⁻³</td>
<td>3,2 × 10⁻⁵</td>
<td>sans objet</td>
<td>sans objet</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Code Sandre</td>
<td>Nom de la substance</td>
<td>Numéro CAS (1)</td>
<td>NQE-MA (2) Eaux de surface intérieures (3)</td>
<td>NQE-MA (2) Eaux côtières et de transition</td>
<td>NQE-CMA (4) Eaux de surface intérieures (3)</td>
<td>NQE-CMA (4) Eaux côtières et de transition</td>
<td>NQE Biote (12)</td>
<td>NQE mollusques (17)</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>---------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>(35)</td>
<td>6561</td>
<td>Acide perfluorooctanesulfonique et ses dérivés (perfluorooctanesulfonate PFOS)</td>
<td>1763-23-1</td>
<td>6.5×10^{-4}</td>
<td>1.3×10^{-4}</td>
<td>36</td>
<td>7,2</td>
<td>9,1</td>
<td></td>
</tr>
<tr>
<td>(36)</td>
<td>2028</td>
<td>Quinoxyfène</td>
<td>124495-18-7</td>
<td>0,15</td>
<td>0,015</td>
<td>2,7</td>
<td>0,54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(37)</td>
<td>7707</td>
<td>Dioxines et composés de type dioxine (15)</td>
<td>sans objet</td>
<td>sans objet</td>
<td>Somme de PCDD + PCDF + PCB-TD 0,0065 μg.kg⁻¹ TEQ (14)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(38)</td>
<td>1688</td>
<td>Aclonifène</td>
<td>74070-46-5</td>
<td>0,12</td>
<td>0,012</td>
<td>0,12</td>
<td>0,012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(39)</td>
<td>1119</td>
<td>Bifénox</td>
<td>42576-02-3</td>
<td>0,012</td>
<td>0,0012</td>
<td>0,04</td>
<td>0,004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(40)</td>
<td>1935</td>
<td>Cybutryne</td>
<td>28159-98-0</td>
<td>0,0025</td>
<td>0,0025</td>
<td>0,016</td>
<td>0,016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(41)</td>
<td>1140</td>
<td>Cyperméthrine</td>
<td>52315-07-8</td>
<td>8×10^{-5}</td>
<td>8×10^{-6}</td>
<td>6×10^{-4}</td>
<td>6×10^{-5}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(42)</td>
<td>1170</td>
<td>Dichlorvos</td>
<td>62-73-7</td>
<td>6×10^{-4}</td>
<td>6×10^{-5}</td>
<td>7×10^{-4}</td>
<td>7×10^{-5}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(43)</td>
<td>7128</td>
<td>Hexabromocyclodécane (HBCDD) (16)</td>
<td>0,0016</td>
<td>0,0008</td>
<td>0,5</td>
<td>0,05</td>
<td>167</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(44)</td>
<td>7706</td>
<td>Heptachlore et époxyde d’heptachlore</td>
<td>76-44-8/1024-57-3</td>
<td>2×10^{-7}</td>
<td>1×10^{-8}</td>
<td>3×10^{-4}</td>
<td>3×10^{-5}</td>
<td>$6,7 \times 10^{-3}$</td>
<td></td>
</tr>
<tr>
<td>(45)</td>
<td>1269</td>
<td>Terbutryne</td>
<td>886-50-0</td>
<td>0,065</td>
<td>0,0065</td>
<td>0,34</td>
<td>0,034</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Annexe 15 : Éléments à prendre en compte pour définir les actions et suivre leurs effets

Comme précisé en préambule du présent guide, les règles d’évaluation de l’état des eaux font partie des éléments à considérer pour déterminer les actions à mettre en œuvre en application de la DCE et suivre leurs effets. La démarche de définition de ces actions et de suivi de leurs effets n’est pas traitée dans le présent guide ; elle nécessite de considérer un panel d’informations complémentaires.

La présente annexe fournit des éléments à utiliser pour interpréter les résultats de la surveillance de l’état des eaux (données relatives au milieu), en complément des règles de classification de l’état des masses d’eau. Elle ne vise pas l’exhaustivité en la matière.

1. Éléments à prendre en compte pour le diagnostic

1) Paramètres et valeurs-seuils

Les éléments suivants sont à utiliser en tant que paramètres complémentaires en fonction des problématiques considérées :

- Concernant la physico-chimie générale en cours d’eau :

<table>
<thead>
<tr>
<th>PARAMETRES</th>
<th>LIMITES SUPERIEURE ET INFERIEURE DU BON ETAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BILAN DE L’OXYGENE</td>
<td></td>
</tr>
<tr>
<td>DCO (mg/l O2)</td>
<td>[20 – 30]</td>
</tr>
<tr>
<td>NKJ (mg/l N)</td>
<td>[1 – 2]</td>
</tr>
<tr>
<td>PARTICULES EN SUSPENSION</td>
<td></td>
</tr>
<tr>
<td>MES [mg/l]</td>
<td>[25 – 50]</td>
</tr>
<tr>
<td>Turbidité (NTU)</td>
<td>[15 – 35]</td>
</tr>
<tr>
<td>EFFETS DES PROLIFERATIONS VEGETALES</td>
<td></td>
</tr>
<tr>
<td>Chlorophylle a + phéopigments (µg/l)</td>
<td>[10 – 60]</td>
</tr>
<tr>
<td>Taux de saturation en O2 dissous (%)</td>
<td>[110 – 130]</td>
</tr>
<tr>
<td>pH (unité pH)</td>
<td>[8 – 8,5]</td>
</tr>
<tr>
<td>ΔO2 (mini-maxi) (mg/l O2)</td>
<td>[1 – 3]</td>
</tr>
<tr>
<td>ACIDIFICATION</td>
<td></td>
</tr>
<tr>
<td>Aluminium (dissous) [µg/l]</td>
<td>[5 – 10]</td>
</tr>
<tr>
<td>pH ≤ 6,5</td>
<td>[100 – 200]</td>
</tr>
<tr>
<td>pH > 6,5</td>
<td></td>
</tr>
</tbody>
</table>

- Concernant les micro-polluants autres que les substances visées par l’arrêté évaluation du 25 janvier 2010, les données de surveillance sont à interpréter à partir :

40 Ces paramètres et valeurs-seuils sont également donnés dans le guide technique du MEDDE du 13 décembre 2012 relatif aux modalités de prise en compte des objectifs de la directive cadre sur l’eau dans les pratiques des services de police en charge des IOTA et des ICPE.
o pour les micro-polluants/substances non visées par l’arrêté évaluation du 25 janvier 2010 modifié mais potentiellement dangereuses, des valeurs guides environnementales (VGE) sont disponibles sur le Portail Substances Chimiques\(^41\). Il s’agit de valeurs scientifiques non réglementaires qui doivent aider à évaluer un enjeu ponctuel lié au dépassement de cette valeur seuil.

o Pour permettre une analyse plus poussée, il est possible de s’appuyer sur les outils de diagnostic comme les indicateurs gradués et agrégés de l’évaluation des risques écotoxicologiques : ces indicateurs sont gradués selon une grille d’interprétation multi-classes (5 classes) afin de relativiser le risque et de proposer une analyse plus fine qui ne ressort pas avec l’évaluation de l’état binaire (bon/mauvais état, « one out/all out ») tel que prévu actuellement par la DCE. Trois Indicateurs gradués d’Evaluation de l’État des Eaux de surface vis-à-vis de potentiels risques environnementaux/écotoxicologiques différents sont proposés relativement à (i) des expositions chroniques ou (ii) des expositions ponctuelles et (iii) pour chaque substance, un indicateur gradué permettant de rapporter l’évaluation de la qualité des eaux à la station pour l’agrégation des substances présentes sur le site de mesure et basé sur la sensibilité de taxons appartenant à 3 niveaux trophiques différents (Rapport INERIS, publication prévue fin 2018).

- Concernant l’hydrobiologie, l’interprétation des données collectées doit permettre de calculer les valeurs des indicateurs biologiques pertinents, mais des compléments d’interprétation sont nécessaires pour pousser le diagnostic au-delà de l’attribution d’une classe d’état.
 o Par exemple, un document d’incidences ou une étude d’impact doit analyser les caractéristiques des peuplements en termes de composition et de structure des peuplements, de structure des populations (poissons) et d’abondance taxinomique (et de structure d’âge pour les communautés piscicoles), et interpréter les résultats pour analyser l’état initial du milieu et les incidences prévisibles du projet.

 o Pour permettre une analyse plus poussée, il est possible de s’appuyer sur les outils de diagnostic disponibles comme par exemple, pour les cours d’eau, l’outil diagnostic invertébrés, ou l’outil diagnostic diatomées qui sera prochainement disponible sur le SEEE.

Pour chaque opération de contrôle, ces outils de diagnostic peuvent produire un tableau récapitulant les probabilités d’altération pour chaque type de pression pris en compte (par exemple, en fonction de l’outil de diagnostic : les matières organiques et oxydables, les matières azotées hors nitrates, les nitrates, les matières phosphorées, les matières en suspension, l’acidification, les micropolluants minéraux, les pesticides, les HAP, les micropolluants organiques, les voies de communications, la ripisylve, l’urbanisation, le risque de colmatage, le risque d’instabilité hydrologique, la rectification) ainsi qu’une sortie graphique composée de diagrammes en radar (schéma ci-après).

\(^{41}\) accessible à l’adresse suivante http://www.ineris.fr/substances/fr/
L’outil IPR+ peut également être utilisé en tant qu’outil d’aide au diagnostic en plus du résultat de l’IPR pour les zones à truite ou les sites multi-impactés par l’hydromorphologie.

L’outil IIR (indice ichtyofaune pour les retenues) peut quant à lui être utilisé en tant qu’outil d’aide au diagnostic pour les retenues. Plus de détails relatifs à son utilisation sont disponibles dans le guide méthodologique de calcul de l’indice ichtyofaune pour les retenues (IIR) de Miguet Paul, Maxime Logez, et Christine Argillier, 2018.

Pour le département de Mayotte, l’outil IDMtrait peut être utilisé en tant qu’outil d’aide au diagnostic. Les valeurs en EQR sont disponibles dans l’arrêté évaluation du 25 janvier 2010 modifié.

A terme, afin d’envisager un diagnostic intégré des masses d’eau, prenant en compte l’ensemble des éléments de qualité biologiques, la boîte à outils de diagnostic sera complétée par d’autres outils (prochainement les outils diagnostic poissons, macrophytes et multi-compartiments pour les cours d’eau), équivalents à ceux déjà existants pour les compartiments diatomées en cours d’eau et invertébrés en cours d’eau.

Les outils web permettant les calculs des outils de diagnostic seront disponibles au fur et à mesure sur le site du SEEE. Actuellement, l’outil diagnostic invertébrés, l’IPR+ et l’IDMtrait y sont disponibles. L’outil diagnostic diatomées sera prochainement disponible.

- **Concernant l’hydromorphologie**, le suivi à mettre en œuvre et l’interprétation des résultats (paramètres et méthodes de description) reposent sur un diagnostic pour identifier les altérations hydromorphologiques existantes (ou prévisibles, par exemple celles décrites dans l’étude d’impact d’un projet) et les altérations écologiques résultantes au regard des pressions étudiées. Les guides d’aide à la définition d’un diagnostic hydrogéomorphologique, d’une étude de suivi et des recommandations pour les opérations de restauration de l’hydromorphologie des cours d’eau (OFB, agences de l’eau), pourront être utilement consultés. Le Centre national de restauration des cours d’eau constitue le centre de ressources idoine pour consulter les nombreux guides disponibles à ce jour et échanger en réseau sur les pratiques et expériences de la restauration physique des cours d’eau (restauration d’annexes alluviales, restauration de la géométrie, restauration de la dynamique fluviale, restauration de la continuité écologique, réhabilitation des fonctionnalités des milieux aquatiques et humides associés etc.).

2) **Connaissance des pressions et des impacts**
La connaissance des pressions et des impacts est également nécessaire pour porter un diagnostic sur les milieux aquatiques, en complément de la connaissance de l’état du milieu. Ces éléments ne sont pas traités dans le présent guide, mais quelques indications sont fournies ci-dessous.

Les données de base à utiliser sont celles relatives aux pressions et aux impacts existants dans les documents de planification du bassin (États des lieux et SDAGE) identifiant les principales pressions par masse d’eau ou par sous-bassin versant, ainsi que les données du rapportage européen (à la masse d’eau). Les actions prévues au programme de mesures fournissent également une indication des principaux types d’impact qu’il est considéré nécessaire de réduire pour atteindre les objectifs des masses d’eau.

Concernant les micropolluants, l’obligation européenne de dresser un inventaire des émissions, rejets et pertes des substances dangereuses à l’échelle de chaque district hydrographique (grand bassin versant) fournit une information agrégée sur les pressions significatives. L’information peut être disponible à une échelle plus fine, dans les états des lieux ou directement dans des bases de données spécifiques comme : le registre des émissions polluantes (i-rep), la base GIDAF relative à la gestion informatisée des données d’auto-surveillance fréquente et/ou la base de données de l’action RSDE pour les ICPE hébergée par l’INERIS et ros’eau pour les STEU.

Concernant l’hydromorphologie, PRHYMO fournit une description cartographique des pressions et des risques d’altérations hydromorphologiques d’un cours d’eau (pour la France hexagonale et la Corse), à large échelle, à l’échelle des tronçons hydromorphologiques, en fonction du type de cours d’eau concerné. Ces données sont accessibles sur le portail EauFrance (www.eaufrance.fr). Ce système constitue un premier niveau d’analyse (pré-diagnostic), et doit être nécessairement complété par d’autres approches spatiales et méthodes, incluant si possible la dimension temporelle, et identifiant les processus physiques et leur altération possible. En complément de PRHYMO, les résultats issus du dispositif de Caractérisation hydromorphologique des cours d’eau hexagonaux et ultramarins (CARHYCE, voir annexe 7) peuvent être utilisés. La complémentarité PRHYMO – CARHYCE permet en effet de visualiser les gradients de pressions (PRHYMO) s’exprimant par des altérations observées (CARHYCE) au sein des cours d’eau ciblés. C’est l’ensemble de ces dispositifs, associé aux démarches de consultation, d’analyse et d’expertise de terrain, qui permet d’objectiver et d’apprécier la qualité hydromorphologique générale de la masse d’eau, pouvant expliquer un risque de non-atteinte des objectifs environnementaux, et permettre alors de préconiser des mesures de restauration ou de réhabilitation appropriées.

Ces données sont à corroborer par la connaissance locale des pressions.
2. Éléments à prendre compte pour montrer l’effet des actions mises en œuvre sur l’état des eaux

2.1. L’état des eaux : un indicateur intégrateur des effets des pressions cumulées sur le milieu

L’état écologique des eaux constitue un indicateur synthétique et agrégé, la biologie étant intégratrice des effets des pressions cumulées. Son amélioration significative nécessite de mettre en œuvre le programme de mesures sur les différents types de pressions en cause dans les dégradations, et ne peut être observé qu’avec un délai de réponse du milieu à ces évolutions des pressions.

Dans le même temps, il est nécessaire de montrer l’efficacité des politiques publiques mises en œuvre et de répondre aux questions des acteurs de l’eau et du public sur les résultats des actions publiques.

Il apparaît donc indispensable de distinguer les évolutions de l’état des eaux :
- à différentes échelles spatiales et temporelles ;
- mais également en termes de thématiques (pollution, hydromorphologie...) et de niveau d’agrégation des paramètres de l’évaluation.

Pour cela, différents types d’analyses et de réponses peuvent être couplés.

2.2. Montrer l’amélioration de la qualité des eaux par des chroniques longues sur des paramètres ciblés sur les effets attendus de ces actions

Il convient de mettre en évidence les résultats des actions de grande ampleur menées sur les territoires, notamment en matière de lutte contre les pollutions ponctuelles domestiques et industrielles dont l’application de la directive ERU.

D’importantes améliorations de la qualité des eaux sont ainsi constatées, sur des paramètres en lien avec ces actions mises en œuvre, et sur une période de temps suffisamment longue pour observer des évolutions significatives de l’état de ces paramètres, comme le montrent les exemples suivants concernant la pollution des cours d’eau par les macro-polluants.

Au niveau national, les analyses menées par le service de la donnée et des études statistiques (SDES) du MTES mettent en évidence une nette diminution depuis une dizaine d’années de la pollution des cours d’eau par les matières organiques et phosphorées, issues des rejets urbains et industriels, tandis que celle due aux nitrates, majoritairement d’origine agricole, ne diminue pas à l’échelle nationale.

Au niveau des bassins, de telles améliorations sont également observées. On observe ainsi, par exemple dans le cas des bassins Rhône-Méditerranée et de Corse :
- une division par 10 des concentrations en ammonium, paramètre indicateur du niveau de traitement des eaux usées, dans les cours d’eau suite à la mise en œuvre de la directive ERU. En 20 ans ce paramètre est ainsi passé d’une qualité médiocre à bonne dans la plupart des cours d’eau du bassin.

- une division par 10 des concentrations en phosphore dans les cours d’eau depuis le début des années 1990, contribuant à une nette amélioration de la qualité des cours d’eau et à la réduction de leur eutrophisation. La qualité vis-à-vis de ce paramètre est passée de mauvaise à bonne.

2.3. Montrer l’efficacité des actions de restauration par des suivis ciblés sur certaines actions de restauration mises en œuvre

L’atteinte des objectifs environnementaux de la DCE nécessite la mise en œuvre d’actions notamment de lutte contre les pollutions diffuses et de restauration physique et de réhabilitation du bon fonctionnement hydromorphologique des milieux aquatiques. Les travaux de restauration hydromorphologique des cours d’eau consistent à réhabiliter totalement ou partiellement les fonctions des cours d’eau, par exemple par : l’effacement ou l’aménagement des ouvrages hydrauliques pour restaurer la continuité écologique, la restauration de la dynamique sédimentaire et le rétablissement de la connectivité avec les autres milieux naturels – y compris les nappes alluviales et les zones humides –, la dérectification, la remise dans le talweg, la reconnexion d’annexes hydrauliques, la suppression de contraintes latérales, la remise à ciel ouvert de cours d’eau, l’augmentation des fréquences de débordement du lit mineur vers le lit majeur etc. Ces travaux concernent également les interventions dans le bassin versant, siège des usages et des pressions qui conduisent à la dégradation des milieux aquatiques (implantation de haies pour réduire les apports de particules fines, restauration de ripisylve suffisante, réduction du ruissellement accru par les usages existants tels que l’urbanisation,...). Ces travaux contribuent à l’atteinte du bon état écologique, conjointement à la suppression des pollutions et à la réduction des prélèvements, dans la mesure où ils favorisent l’abondance et la diversité des habitats et des éléments biologiques, l’apport d’éléments nutritifs (déchets végétaux), les facteurs d’ambiance favorables pour les habitats, ainsi que l’auto-épuration des eaux.

Comme le montre le rapportage à mi-parcours des programmes de mesures, il existe d’importants freins à leur mise en œuvre, en particulier :
- Techniques (connaissance, complexité, dimensionnement des actions, réponse des milieux…) ;
- Juridiques et réglementaires ;
- Financiers (coûts disproportionnés, difficultés à mobiliser des aides pour les agriculteurs) ;
- Sociologiques (acceptation).

Cependant, les intérêts et les bénéfices multiples de la restauration des milieux sont de mieux en mieux reconnus par les acteurs de l’eau sur leurs territoires. Il convient d’accompagner ces opérations de restauration par de la pédagogie, de l’explication adaptée au public cible, de l’argumentation des objectifs, de la démonstration des résultats attendus à court, moyen et plus long termes, et de l’intégration des populations riveraines à ces projets de territoire de l’eau.

Il est par exemple recommandé de mettre en perspective des réalisations, des résultats d’actions mises en œuvre localement ou à plus large échelle, par des suivis ciblés sur certaines actions de restauration. Le choix de ces actions et des modalités de leur suivi est à adapter en fonction des problématiques considérées.
Annexe 16 : Remarques concernant l’utilisation des résultats de l’évaluation de l’état des masses d’eau en lien avec les programmes de mesures de la DCE

On peut distinguer quelques grandes catégories de situations, selon différents niveaux de pressions correspondant à différents types d’enjeux pour le programme de mesures :

1. **Milieux en très bon état écologique : à préserver pour eux-mêmes et pour leur rôle fonctionnel**

La reconquête du bon état écologique des masses d’eau nécessite de disposer de suffisamment de milieux préservés, au niveau de leur structure (diversité biologique…) et de leur fonctionnement écologique (notions d’hydrodynamique, d’habitats…), bien répartis sur le territoire, pour jouer efficacement leur rôle de réservoir biologique.

L’enjeu pour les programmes de mesures de la DCE est de préserver ou de restaurer ces milieux, qui peuvent inclure :
- les masses d’eau évaluées en très bon état écologique selon les critères du présent guide ;
- d’autres masses d’eau ou d’autres milieux aquatiques fonctionnellement liés (milieux humides annexes, affluents ou tronçons de cours d’eau), qui ne remplissent pas forcément tous les critères du très bon état écologique DCE sensu stricto, mais dont la structure et le fonctionnement écologique sont suffisamment préservés pour jouer un rôle fonctionnel de réservoir biologique.

2. **Milieux sévèrement dégradés (état mauvais, médiocre, ou moyen proche du médiocre)**

Ces milieux sont soumis à une ou à des pressions de forte intensité, généralement bien identifiées. Les principales actions à mener pour améliorer l’état de ces milieux sont dès lors elles aussi, en général, bien identifiées.

La réduction de ces pressions fortes peut s’avérer nécessaire, outre pour améliorer l’état de la masse d’eau sur laquelle s’exerce(nt) directement cette ou ces pressions fortes, mais également pour contribuer à l’atteinte du bon état d’autres masses d’eau liées (répercussion possible des impacts à l’amont ou à l’aval).

3. **Milieux en état moyen, proches du bon état**

Les enjeux pour les programmes de mesures sont similaires pour les masses d’eau figurant dans cette catégorie, quel que soit le résultat précis de l’évaluation de leur état. Il convient de réduire les pressions s’exerçant sur ces masses d’eau pour améliorer la qualité de leur structure et de leur fonctionnement écologique.

Si le détail de la justification de l’action au titre de la DCE diffère, sa nécessité demeure :
- dans un cas, il convient d’agir au titre de la non-détérioration (masse d’eau identifiée en état bon mais limite, donc en risque de dégradation) ;
- dans l’autre cas il convient d’agir au titre de l’atteinte de l’objectif de bon état (cas d’une masse d’eau évaluée en état moyen avec un objectif de bon état).
Remerciements

La réactualisation de guide technique pour l’évaluation de l’état des eaux de surface continentales a été réalisée avec la contribution des membres des groupes de travail nationaux (GT eaux de surface continentales, GT hydromorphologie, GT plans d’eau et GT substances) issus des agences et offices de l’eau, de l’office français de la biodiversité, d’organismes de recherche (CEREMA, INRAE, INERIS), du laboratoire national de référence sur la surveillance des milieux aquatiques AQUAREF, d’universités (Université de Lorraine), et du ministère de la Transition écologique et solidaire (services déconcentrés et administration centrale).
Guide technique
relatif à l’évaluation de l’état des eaux de surface continentales (cours d’eau, canaux, plans d’eau)

Décembre 2023